Performance of highly irradiated pixel sensors for the CMS HL-LHC upgrade

corrinne mills (UIC+FNAL)

On behalf of the CMS Tracker group

TREDI in Vienna 17 February 2020

CMS HL-LHC pixel upgrade

- CMS Phase-2 pixel detector for the HL-LHC must withstand an unprecedented radiation environment: 2 x 10¹⁶ n_{eq}/cm²
 - \rightarrow Barrel innermost layer ~3 cm from beam
- Years-long program of sensor, ROC R&D for designs that can tolerate this
 - → Thinned planar sensors, or go to 3d sensors, significantly finer pitch than current detectors (150 x 100 → 25x100 or 50x50 µm²)

TBPX

→ RD53A readout chip prototype, test 3 analog front-ends and 65 nm process

Approximate region of > 1 x $10^{16} n_{eq}/cm^2$: TBPX layer 1 and innermost TFPX ring

1/4 of final detector

🖻 🛟 Fermilab

TY OF

c. mills

 \rightarrow US (NSF) contribution

TFPX

Planar sensor studies

- Performance of planar sensors designed for the CMS Phase-2 pixel detector upgrade have been studied at a fluence just above 5×10^{15} n_{ea}/cm² 100
- RD53A Lin efficiency [%] Sensor with no bias dot 98 reaches full efficiency first 96 \rightarrow Motivation to omit bias 94 dot 92 threshold angle sensor 90 1300 e 34° 88 18° 86 1200 e 100x25 no bias dot, $5.2 \cdot 10^{15} n_{PS}/cm^2$ 50x50 bias dot, $5.3 \cdot 10^{15} n_{Ka}/cm^2$ 84 1500 e 34° 100x25 bias dot, $5.6 \cdot 10^{15} n_{PS}/cm^2$ 82 50x50 bias dot, $6.6 \cdot 10^{15} n_{PS}/cm^2$ 1400 e 30° 80 100 500 0 200 300 400

c. mills

ERSITY OF

plot: J Sonneveld

😎 辈 Fermilab

3

800

600

17 February 2020

700

sensor bias [V]

Irradiation at Los Alamos

- LANSCE facility: 800 MeV protons
- Profile monitored by PIN diode: a beam spot (1 σ) of ~6.5 mm (x) and ~8.5 mm (y)
- Beam centered on the Linear front-end
- Sensors tilted in the beam
 - \rightarrow ellipsoidal irradiation spot

Pin Diode Array analysis of the LANL beam profile during the November 2019 irradiation courtesy Martin Hoeferkamp and Sally Seidel, University of New Mexico.

Irradiation at Los Alamos

- Planar pixel sensors bump-bonded to the RD53A prototype chip were irradiated for CMS in late 2018
 - \rightarrow Half to full layer-1 (2x10¹⁶ n_{eq}/cm²) fluence, rest to 1x10¹⁶ n_{eq}/cm²
- Estimate of peak fluence of "1x10¹⁶ n_{eq}/cm²" batch was more like 1.3x10¹⁶ n_{eq}/cm².
 - \rightarrow Measured through activation of AI foils

ERSITY OF

😎 辈 Fermilab

- \rightarrow Relatively little information exists on pixel sensors at this fluence
- Wirebonds encapsulated with sylgard for mechanical protection prior to irradiation
 - → Fine at lower doses (2 MGy) but hardens & cracks with this amount of radiation (5-7 MGy)
- This talk: results from a sensor in the 1.3 x 10^{16} n_{eq}/cm² batch

→ One other device from this batch partially functional: problems synching with external clocks but sensitive to beam and radioactive sources with similar efficiency

Lucky Number 13

- HPK, 50x50 μ m², 150 μ m thick, FDB
- Open p-stop design

🐵 辈 Fermilab

- \rightarrow Reduced active area
- \rightarrow Not baseline for CMS HL-LHC

- Sylgard pulled back from sensor and took the wirebonds with it
- Inspection and repair of HV wirebonds at Fermilab recovered sensor

Test beam schematic

CM

FNAL test beam setup

DUT in coldbox

- Run devices cold (-25C -35C) to control leakage current during ٠ operation of irradiated devices
- Grateful to Mauro Dinardo, Luigi Moroni for loan of their coldboxes •

ERSITY OF

Peltier power & monitoring

Tuning irradiated module

🚾 辈 Fermilab

CMS

Bias and Efficiency

11

• I-V for sensor used in beam depends on temperature as expected

 \rightarrow Purple curve (-30C) is our operating point

- Bias voltages at the sensor (corrected for resistors on adapter card)
- Efficiency vs bias voltage does not seem to plateau

🗄 🗄 🗢 🛠 Fermilab		c. mills			17 February 2020			
E IVERSI CAGO CAGO	efficiency	0.69	0.74	0.82	0.88	0.92		
₹ O	voltage (V)	370	460	550	640	720		

Residuals

- Reconstruction and alignment with Monicelli software (INFN-Milano Bicocca)
- Current best alignments: 16-17 μ m resolution
 - \rightarrow Normal incidence
 - \rightarrow ~90% single-pixel clusters and 50/sqrt(12) = 14; difference mostly attributable to telescope resolution (5-7 μ m)

Charge and clusters

- Internal charge-injection calibration converts ToT -> electrons
- Distributions sculpted by 1400e threshold

ERSITY OF

AGO

💩 😎 Fermilab

- \rightarrow Still a clear trend of increased charge collection at higher bias voltage
- \rightarrow Same temperature and configuration otherwise
- About 90% single-pixel clusters, shift to higher values with V_{bias}

plots: S Dittmer (left), J Reichert (right)

 $\subseteq M$

Bias scan: cell efficiency

- Looking at single
 pixel
- 1400e threshold
- -30C

0.9

0.8

0.7

-0.6

0.5

0.4

0.3

0.2

0.1

20 25

x (µm)

-5 0 5 10 15

460 V

- linear FE only
 - Reduced efficiency at edges: charge sharing, inactive area around pixel

370 V

15

10

5

0

-5

-10

-15

-20

-25 -25

-20 -15 -10 -5 0

🐵 **芬** Fermilab

THE UNIVERSITY OF UNIVERSITY OF ILLINOIS AT CHICAGO

Bias scan: efficiency map

640 V

460 V

- Looking at linear FE
- 1400e threshold
- -30C •
- Pixels grouped in 8x8 blocks - x, y axes are core row and column
- linear FE only

plots: J Reichert

370 V

c. mills

Efficiency and fluence vs row

- Above: occupancy from 10minute self-trigger scan
 - \rightarrow Activation gammas
 - \rightarrow Fluence profile:

😎 🚰 Fermilab

ERSITY OF

NOIS

99

- flat vs column
- Peak around row 150
 - plots: A Hassani & S. Wagner

- Devices tilted in the irradiation beam → fluence relatively constant within a row
 - → Efficiency vs. row is a good proxy for efficiency vs. fluence
 - \rightarrow Below: efficiency at 720V

CMS

Conclusion and plans

• Studied planar sensor with fluence up to $1.3 \times 10^{16} n_{eq}/cm^2$

- → Encouraging: > 90% efficiency with the irradiated sensor at -800V and -30C, likely some efficiency loss from p-stop
- \rightarrow Need to understand reproducibility of effects

FNAL Irradiation Test Area under construction

- \rightarrow 400 MeV protons, 10¹⁴ p/hour
- → First beam expected spring 2020: start with silicon samples (that means us!)
- \rightarrow Test beam and irradiation integrated in one facility

New round of irradiation testing planned for this year

- \rightarrow Aim for max fluence 2.0 x 10¹⁶ n_{eq}/cm² again
- \rightarrow LANSCE request in, will to go to FNAL if it's ready
- → Testing the devices for this campaign in December and upcoming February testbeam runs to establish baseline
- → Systematically understand planar sensor behavior at full HL-LHC fluence, test some 3d sensors as well

😎 🛟 Fermilab

VERSITY OF NOIS

The Test Beam Team

Corrinne Mills, Susan Dittmer, Bryan Cardwell, Titas Roy, Joaquin Siado Castaneda, Joey Reichert, Andre Frankenthal, Stephen Wagner, Stefan Spanier, Julia Thom, Cristina Mantilla Saurez, Frank Jensen, Jason Thieman, Scarlet Norberg, Himal Acharya, Jason Forson, Luke Moore, Duong Nguyen, Tongguang Cheng, Gail Hanson, Ricardo Gonzalez, Alvaro Guerrero, Abbas Hassani, Matthew Jones, Karl Ecklund, Ben Bentele, Chris Hill, Ben Bylsma

Big thanks to Lorenzo Uplegger, Luigi Moroni, Mauro Dinardo, Davide Zuolo, Michael Mocko, John Cumalat, the LANL Blue Room team, Michelle Jonas, Timon Heim

FNAL testbeam

Fermilab Test Beam Facility Overview

IIVERSITY OF LINOIS

