Hybrid LGAD-based detector design for microdosimetry applications

TREDI 2020: 15th "Trento" Workshop on Advanced Silicon Radiation Detectors
18 Feb 2020

M. Boscardin, M. Centis Vignali, E. Pierobon, M. Castelluzzo, V. Monaco, E. Scifoni, F. Tommasino, L. Ricci, C. La Tessa
MICRODOSIMETRY

Introduction and Applications
Estimate of biological parameters from direct physics measurements, so:

- Assessment of the radiation quality
- Evaluation of the physical dose
The physical parameters describing the radiation field are obtained by measuring the radiation effects in tissue at a micrometer scale (same of a cell nucleus, where the main radiation damage occurs)
The energy deposited in the mass (dose) at this volume scale is **stochastic**.
Gas Detector:
Tissue Equivalent Proportional Counter

ACTIVE REGION: sphere filled with propane gas at low density

- **Real diameter** of the active region ➞ 1.2 cm
- **Tissue-Equivalent diameter** of the active region ➞ 2 μm
APPLICATIONS OF MICRODOSIMETRY

RADIOTHERAPY

RADIATION PROTECTION IN SPACE
2

MEASUREMENTS & DATA ANALYSIS
MEASUREMENTS WITH TEPC
The TEPC can be placed both **in- and off-beam** in the water phantom to reproduce the tumor and its surrounding normal tissue.
Microdosimetric spectra, mean values of the distributions and biological dose have been obtained:

- \(f(y) \) frequency of particle with a given lineal energy \(y \) (energy deposited over the mean chord length of TEPC)

- \(yf(y) \) and \(yd(y) \) distributions (\(d(y) = yf(y) \))
THE NEW DETECTOR

Hybrid detector: TEPC + LGAD
IDEA OF THE HYBRID DETECTOR: TEPC + Silicon System

INFORMATION on:
- Energy deposition of all particles traversing the TEPC
- Particles tracking (with 4 layers of strips) and particle detection
- Correction of the mean chord length value with the real path length of the particles
LGAD (Low Gain Avalanche Diode)

- Avalanche Diode with a **low gain** (5–10)

- LGAD merges the best characteristics of traditional silicon sensors with the main feature of Avalanche Photodiodes (APD), using n-in-p silicon diodes with a low and controlled internal multiplication mechanism
The LGADs are produced at FBK(Trento) while the read-out chip ABACUS have been developed at University of Turin within the Move-it project.

- Existing dimension to start to play with: 0.56 cm x 1.5 cm

- 50 μm of active thickness, 300 μm of passive thickness (but can be further thinned till 70-100 μm)
Two LGAD geometries are now being produced at FBK, which are both 14 mm squares, more suitable for our application:

- 34 strips per sensor
- pitch 360 μm
- better fill factor
- less channels to read

- 71 strips per sensor
- pitch 180 μm
- better spatial resolution
The simulations presented here were run with the following setup:

- **BEAM** = 150 MeV protons, pencil beam
- **SCORING POSITION** = 50 mm along the beam direction (plateau region)
Final goal: Assess the difference between the TEPC lineal energy spectrum calculated with the mean chord length or with the real length

Error on mean value for the $y_d(y)$ distribution is in the order of 30%
We are now evaluating the difference between the real track length of particles traversing the TEPC with the track length obtained from the 4 LGADs system:

34 strips system
• Error on tracking is in the order of 9%

71 strips system
• Error on tracking is in the order of 6%

(But around 30% of events in common between TEPC and 4 LGADs are rejected due to multiple scattering)

Additional tests with different tracking algorithms are needed!
We manage to see a signal from the chip!

We are now starting FPGA programming for reading the strips of a single LGAD
WORK IN PROGRESS AND FUTURE STEPS

- Readout system based on FPGA
- Additional MC simulations of the hybrid detector with GEANT4
- Tests with protons at Trento Protontherapy Center
THANK YOU FOR YOUR ATTENTION