Technology Development of LGADs at FBK

Fondazione Bruno Kessler

G. Borghi, M. Boscardin, M. Centis Vignali¹, F. Ficorella, O. Hammad Ali, G. Paternoster

University of Trento and TIFPA

G.F. Dalla Betta, L. Pancheri

University of Torino and INFN

R. Arcidiacono, N. Cartiglia, M. Mandurrino, V. Monaco, M. Ferrero, S. Giordanengo, F. Siviero, V. Sola, M. Tornago, A. Vignati

> Paul Scherrer Institute M. Andrae, A. Bergamaschi, B. Schmitt, J. Zhang

> > 18/02/2020 TREDI 2020

¹mcentisvignali@fbk.eu

- Silicon detectors with charge multiplication
- Gain \approx 10
- Gain layer provides high-field region
- Junction Termination Extension improves stability
- Improve SNR of the system (When the sensor shot noise is not dominating)
- Noise and power consumption \Rightarrow low gain

Segmentation

- LGAD structure is repeated
- No-gain area between channels
- JTE and channel isolation contribute to the no-gain area

High Energy Physics

HL-LHC: With the current vertex resolution a significant fraction of the vertices will not be resolved

[ATLAS simulation] t <u>=200 Development within the UFSD project

Use time coordinate to mitigate pile-up

- $\bullet\,$ Track time resolution \approx 30 ps
- Radiation resistance to few 10¹⁵ n_{eq}/cm²
- $\bullet\,$ Hit time resolution at end of life $\approx 50\ ps$

Radiation Hardening of LGADs

Carbon co-implantation makes the gain layer more radiation hard

M. Centis Vignali

18/02/2020 5/20

- Thin sensors
- Mult. layer affected by acceptor removal
- Modify the mult. layer doping profile
- Use of different dopants to reduce the effect (Ga, C co-implantation)

LGADs for Timing

- Thickness of 50-60 μ m \Rightarrow support wafer
- Measurements using charged particles
- Reached required time resolution up to $\Phi_{eq} = 3 \cdot 10^{15} \text{ cm}^{-2}$
- C coimplantation (W6): improved time resolution up to $\Phi_{eq} = 1.5 \cdot 10^{15} \text{ cm}^{-2}$

[S. Mazza arXiv 2018]

- Thickness of 50-60 μ m \Rightarrow support wafer
- Measurements using charged particles
- Reached required time resolution up to $\Phi_{eq} = 3 \cdot 10^{15} \text{ cm}^{-2}$
- C coimplantation (W6): improved time resolution up to $\Phi_{eq} = 1.5 \cdot 10^{15} \text{ cm}^{-2}$

[S. Mazza arXiv 2018]

RRUNO KESSI FR

Hadron Therapy

Development within the MoVeIT project

Beam monitoring during treatment

- Quality assurance
- Energy (TOF measurement)
- Particle count
- Beam profile

Sensor requirements similar to HEP **but** TOF measurement using several particles

Particle Counting

A. Vignati [MMND 2020]

- LGAD strip sensor
- Rate on one strip
- Goal rate: 1-2 MHz/strip
- Pile-up correction with paralizable model extends linearity

Particle counting accuracy meets expectations

Energy Measurement

Production for full scale prototype will start soon

X-ray Detection

[Wikipedia CC BY-SA 2.0⁴⁷]

Detection of soft X-rays: 250 eV - 2 keV

- K-edges of bio elements
 → pharmaceuticals, cell imaging
- L-edges of 3d-transition metals
 → magnets, superconductors, quantum
 materials ...

Use LGADs:

- Gain to lower the detection limit of photon counting detectors
- Gain to improve SNR of integrating detectors
- Thin entrance window must be developed

Low Energy X-ray Detection

Improvement in detection threshold

[A. Bergamaschi TREDI2019] [M. Andrae, J. Zhang, et al. J. Synchrotron Rad. (2019)]

Technology Development of LGADs at FBK

Low Energy X-ray Detection

Improvement in detection threshold

[A. Bergamaschi TREDI2019] [M. Andrae, J. Zhang, et al. J. Synchrotron Rad. (2019)]

Low Energy X-ray Detection

- Photon counting LGAD strip detector
- Fluorescence X-rays
- Sulfur target
- *K*_α = 2.31 keV
- *K*_β = 2.46 keV
- Von Hamos spectrometer

Segmentation: Fill Factor

Focused 20 keV x-ray beam

Impact on detection efficiency

Signal vs position for 3 strips Fill factor needs improvement

100

200

Position [µm]

Nominal

[M. Andrae, J. Zhang, et al, J. Synchrotron Rad, (2019)]

300

400

Technology Development of LGADs at FBK

- Continuous gain area in the active region \Rightarrow 100% fill factor
- Double sided process
- Active thickness is the wafer thickness
- Readout side is ohmic
- Design not optimal for timing applications
- $\bullet\,$ Readout side separated from LGAD side \Rightarrow no restrictions on channel dimensions

[G.F. Dalla Betta et al. NIM A 796 (2015) 154]

Double Sided LGADs

Proof of concept in first FBK LGAD production

- Signal of regular vs double sided LGAD
- Pad size ≫ thickness
- Laser illumination
- Signals are similar
- A difference is expected for smaller pads
- Production to start soon dedicated to X-ray detection
- Optimization for thin entrance window (LGAD side)

- Continuous gain area in the active region \Rightarrow 100% fill factor
- Readout channels capacitively coupled
- Resistive layer to limit signal spreading

One future production to start in summer 2020

- No restrictions on channel dimension
- One production optimized for timing \Rightarrow results in N. Cartiglia talk (this session)

[M. Mandurrino et al. IEEE EDL, vol. 40, no. 11, 2019]

Trench Isolated LGADs

- Trenches substitute the JTE and isolation structures
- Trench width about 1 μ m \Rightarrow fill factor close to 100%
- One production optimized for timing

[G. Paternoster et al. IEEE EDL (2019) in revision]

Factor 5 reduction in no-gain area

Production optimized for timing to start soon

RD50

Technology Development of LGADs at FBK

Trench Isolated LGADs Laser characterization

Factor 5 reduction in no-gain area

Production optimized for timing to start soon

[G. Paternoster HSTD12 2019] 18/02/2020 18/20

RD50

charge [a.u.]

Technology Development of LGADs at FBK

Process Capabilities

Recticle $\approx 2 \times 2 \text{ cm}^2$ on wafer

Stitching

- Stepper machine to reduce min feature size with respect to mask aligner
- Recticle constraints the sensor size
- Stitching overcomes this limitation

Tested successfully in one LGAD production

[G. Paternoster TREDI2019]

Wafer thinning

- Handle wafer (\approx 300 μ m) used in production of thin (\approx 50 μ m) LGADs
- Material budget constraints in several application
- Thinning to reduce handle wafer thickness Capability to be acquired in the next 1.5 years

Summary

- Active development of LGADs at FBK
- Several projects benefit from the sensors
- Development and evolution of different LGAD "flavors" to solve different measurement problems
- Several LGAD productions foreseen in the future

Backup Material

Photon Counting Detectors Characterization

- Monochromatic x-rays
- Can be fluorescence

- S-curve by scanning the threshold
- S-curve is the running integral of the spectrum

[A. Bergamaschi TREDI2019]

X-ray Attenuation Length

http://henke.lbl.gov/optical_constants/atten2.html

Time Resolution

$$\sigma_t^2 = \sigma_{\text{jitter}}^2 + \sigma_{\text{time walk}}^2 + \sigma_{\text{Landau noise}}^2 + \sigma_{\text{distortion}}^2 + \sigma_{\text{TDC}}^2$$

- Landau noise: non-uniformity in the energy deposited per unit length
- Distortion: change in signal shape due to detector non-uniformities
- TDC: resolution of the TDC, if no other effects: $bin/\sqrt{12}$

Radiation Damage in Silicon Detectors

FONDAZIONE BRUNO KESSLER

Bulk damage

- Non ionizing energy loss (NIEL)
- Defect generation in the lattice
- Change of V_{dep}
- Increase in leakage current \rightarrow noise
- Decrease in signal

Damage expressed as equivalent fluence of 1 MeV neutrons Φ_{eq} [cm⁻²]

Surface damage

- Ionizing energy loss in SiO₂
- Traps at the Si-SiO₂ interface
- Build up of positive charge
- Modification of electric field
 - \rightarrow charge losses
 - $\rightarrow \text{noise}$
 - ightarrow breakdown
- Conductive layers
- Affects sensors and electronics

Acceptor Removal

Change in doping in boron-doped p-type silicon

Affects:

- p-type silicon sensors
- LGADs \rightarrow gain reduction
- $\bullet\ \mbox{CMOS}\ \mbox{sensors}\ \rightarrow\ \mbox{change}\ \mbox{in depletion}\ \ \mbox{region}$

$$N_{eff}(\Phi) = N_{eff}(0) - N_c(1-e^{-c\phi}) + g_c \Phi$$

- $N_{eff}
 ightarrow$ effective doping concentration
- $N_c
 ightarrow$ "removable" dopants
- c
 ightarrow acceptor removal constant
- $\Phi \to \text{fluence}$
- $g_c
 ightarrow$ introduction rate