

The Inner Tracking System Upgrade for ALICE

Jian Liu (University of Liverpool) on behalf of the ALICE Collaboration

TREDI2020: 15th "Trento" Workshop on Advanced Silicon Radiation Detectors 17-19 February 2020, TU Wien

ALICE Upgrade for Run 3

- **Major upgrades** are underway for **ALICE** during LHC long shutdown 2(LS2)
- Physics goals \rightarrow high-precision measurements of QGP properties
 - Heavy-flavor hadrons and quarkonia at very low p_{τ}
 - Vector mesons and low-mass di-leptons
 - High-precision measurements of light nuclei and hypernuclei
- Main detector requirements for the new Inner Tracking System (ITS2)
 - High tracking efficiency and resolution at low p_T

LHC

cryolimit

regions

2 x nominal Lumi

190 fb⁻¹

interaction

2018

Run 2

EYETS

13 TeV

nominal Lumi

• Increased spatial resolution, reduced material budget

LS2

des Consolidat

LIU Installation

11 T dipole coll.

Civil Eng. P1-P5

ATLAS - CMS

upgrade phase 1

LICE - LHC

Run 3

13 - 14 TeV

2 x nominal Lumi

• High statistics

LS1

plice consolidation

R2E project

experiment

beam pipes

tton collimators

Run 1

8 TeV

75% nominal Lun

30 fb⁻¹

7 TeV

• Increased readout rate, online data reduction

HL-LHC

LS3

HL-LHC

installation

ATLAS - CMS

HL upgrade

2025

radiation

damage

350 fb^{-'}

Run 4 - 5.

14 TeV

5 to 7.5 x nominal Lum

2040

3000 fb-1

4000 (ultimate

integrated

Inner Tracking System Upgrade – ITS2

"Technical Design Report for the Upgrade of the ALICE Inner Tracking System" ALICE Collaboration, J.Phys. G41 (2014) 087002, CERN-LHCC-2013-024

Entirely Monolithic Active Pixel Sensor (MAPS) based complete silicon pixel detector

- 7 cylinders covering ~ 10 m² area
 - Inner barrel: 3 inner layers
 - Outer barrel: 2 middle layers + 2 outer layers
- Fake-hit rate: < 10⁻⁶ /event/pixel
- Detection efficiency: > 99%
- Fast removal/insertion for yearly maintenance

	ITS1	ITS2
Technology	Hybrid, drift, strip	MAPS
Layers	6	7
Spatial resolution	12 μm x 100 μm	5 μm x 5 μm
Radius	39 – 430 mm	22 mm – 400 mm
Pseudorapidity	-1 ≤ η ≤ 1	$-1.4 \le \eta \le 1.4$
Material budget	~ 1.14% X ₀	~ 0.3% X_0 (inner barrel), ~ 1% X_0 (outer barrel)
Readout capability	1 kHz	>100 kHz (Pb-Pb), >1 MHz (pp)

ITS Upgrade Simulated Performance

Pointing resolution

- x3 and x6 improvement in r ϕ and z for 0.5 GeV/c π
- 40 μm for 0.5 GeV/c π

Standalone tracking efficiency

- > 60% for 0.1 GeV/c π
- > 95% for π with p_{τ} > 0.3 GeV/c

ALPIDE: MONOLITHIC ACTIVE PIXEL SENSOR

ALPIDE technology features:

- TowerJazz 180 nm CiS Process, full CMOS
- Deep P-well implementation available
- High resistivity epi-layer (>1 k Ω ·cm) p-type, thickness 25 µm
- Smaller charge collection diode → lower capacitance → higher S/N
- Possibility of reverse biasing
- Substrate can be thinned down

Sensor specification:

- Pixel pitch 27 μ m x 29 μ m \rightarrow spatial resolution 5 μ m x 5 μ m
- Priority Encoder Readout
- Power: 40 mW/cm²
- Trigger rate: 100 kHz
- Integration time: < 10 µs
- Read out up to 1.2 Gbit/s
- Continuous or triggered read-out

ITS2 Inner Barrel

Inner Barrel (IB):

- Three layers
 - Layer0: 12 staves
 - Layer1: 16 staves
 - Layer2: 20 staves
- Hybrid Integrated Circuit (HIC): 9 sensors glued onto AI Flexible Printed Circuit (FPC)
- Wirebonds electrically connect FPC to chips
- Stave: a HIC glued onto cold plate and space frame
- Each sensor is read out individually

HIC & stave production:

- Production site: CERN
- 140 staves assembled
- Yield 73%
- Production completed and enough for two IB sets plus spares

ITS2 Outer Barrel

Outer Barrel (OB):

- OB HIC:
 - 7x2 sensors (2 rows) glued onto Cu FPC
 - Wirebonds electrically connect FPC to chips
 - Power delivered via 6 AI cross-cables soldered to the FPC
 - Data and control are transferred through 1 master chip per row
- OB stave:
 - 4x2 HICs (for ML) or 7x2 HICs (for OL) glued onto cold plate and space frame
- 54 ML staves (24 + 30) + 90 OL staves (42 + 48)

ITS2 OB HIC Production Summary

OB HIC production:

- HIC assembly sites: Bari, Liverpool, Pusan/Inha, Strasbourg, Wuhan
- FPC test and preparation sites: Trieste, Catania
- 1692 working HICs needed to build OB staves
- 2679 HICs assembled and 2270 HICs qualified as Detector Grade (DG)
- 2200 HICs distributed to OB stave production sites

OB HIC YIELD Gold/Silver + Bronze + Burnt through + NO Backbias

58.7%+11.1%+5.5%+9.4%

84.7%

Production completed on 25/11/2019

ITS2 OB Stave Production Summary

Stave yield vs time

OL

OB stave production:

- production sites: Torino, Frascati, Daresbury and Nikhef (for OL), Berkeley (for ML)
- 68 (64 DG) ML staves + 107 (101 DG, including 4 reworked) OL staves assembled

ML production completed in October 2019 OL production completed in December 2019

ML overall YIELD: 94%

OL overall YIELD: 94%

m 4000000 -0m 400000

Week

ALICE

Layer and Barrel Assembly

Inner Barrel assembly completed: fully functional

Outer barrel assembly completed

Detector Insertion Test

Detector barrels and cage insertion test in TPC mock-up ongoing

ITS2: Assembly and Commissioning Timeline

Detector Construction and Assembly

- Module production: done!
- Stave production: done!
- Electronics production: done!

Assembly and Commissioning Commissioning ongoing (operation 24/7)

OB Assembly End: done

End of commissioning in lab

Installation

Global Commissioning \rightarrow 6 months

Inner Barrel Assembly

Readout Unit

Outer Barrel Assembly

12

Installation

May '19

Jun '19

Oct '19

Dec '19

Mav '20

Jul '20

Oct '20

Feb '21

Commissioning Overall Status

- Commissioning of the detector on surface is underway
- Aim to obtain the detector performance and long stability of parameters before installation inside the cavern
- Commissioning shifts 24/7 started from 1/07/2019, 3 daily teams with 2 shifters + 1 shifter leader
- Detector status monitoring: voltage, current and temperature
- Data taking: threshold scan, fake-hit rate and readout test
- Data Quality control (QC)
- IB: IB-Top and IB-Bottom data taking, cosmic track studies ongoing
- OB: ML and OL fully powered on, basic verification ongoing

Commissioning –Threshold Tuning

25

15 문

- 25

20 [DAC] 15

Threshold tuning on IB Half-layer (Debug Layer)

- Adjustment of front-end parameters to equilibrate the charge thresholds
- Achieving uniform response across the detector
- Very satisfying threshold stability over time

After tuning

Row [px]

TREDI2020 18/02/2020 J. Liu

TREDI2020 18/02/2020 J. Liu

15

Threshold is a trade-off between:

OB threshold and noise:

Detection efficiency : Threshold < Charge QMIP (~225 e-) ۲

Threshold and noise after tuning an OL Stave (~100M pixels)

compared with test data from a single chip

Fake-hit rate : Threshold >> Noise

Extremely quiet detector!

Fake-hit rate for IB-Top (half IB):

From tests performed on half IB, running the IB

Commissioning – Threshold and Noise

Commissioning – Cosmic Track

Goals: study track and cluster parameters, alignment

- Get around 1 cosmic track per second
- Along with cosmic tracks have seen vertexes (rates of ~ 1/min)
- Commissioning data analysis ongoing

Summary

- ALICE upgrade during LS2 to enhance physics performance is underway
- One key part is the upgrade of the ITS to ITS2 (an all pixel version based on MAPS)
- The ITS upgrade will dramatically improve performance: impact parameter resolution, efficiency and readout rate capabilities
- Component production, assembly of detector and services are completed
- Commissioning in laboratory is ongoing and shows excellent performance, due to finish beginning of May 2020
- The detector will be transferred to the ALICE cavern starting in May and installed in the experiment in July 2020, followed by 6 months of global commissioning
- Plan to take data in 2021
- A further upgrade of the fully-cylindrical ITS Inner Barrel (ITS3) for the LHC Long Shutdown 3 has been
 proposed and the kick-off meeting was held at CERN on 04/12/2019

See Magnus Mager's talk: "The LS3 upgrade of the ALICE Inner Tracking System based on ultra-thin, wafer-scale, bent Monolithic Active Pixel Sensors"

