

The ATLAS ITk Strip Detector Sensors for the Phase-II LHC Upgrade

Bart Hommels – Cavendish Laboratory for the ATLAS ITk Strip Sensor Collaboration lbah2@cam.ac.uk

Introduction

- Sensor Layout and Construction
- **Results on Irradiated Samples**
- Long-Term Operation
- **Sensor Quality Control**

Summary

Introduction

ATLAS Upgrade: the Inner Tracker (ITk)

All-Silicon Tracker with Barrel & Endcap layout

- Pixel inner layers
- Strips outer layers
- Barrel:
 - short & long strip rectangular sensors
 - 2 double-sided layers of each
- Endcap:
 - Radial Strip orientation in endcap
 - 6 double-sided discs
- 17888 Sensors covering ~ 200m² area
- See <u>talk</u> by Craig Sawyer later today

Bart Hommels - Cavendish Laboratory

This talk

Radiation environment

- Highest expected fluence:
 - 10.6x10¹⁴ 1 MeV *n*-equivalent for endcap

ATI AS

- 6x10¹⁴*n*-eq for barrel
- Design & test to fluence with safety factor 1.5
- Bulk damage:
 - reduced charge collection
 - increased leakage current
- Surface damage:
 - charge accumulation in SiO2 layers
 - local breakdown
 - reduction of strip isolation
- Radiation hardness verification using reactor neutrons, proton beams, gamma sources

Sensor Layout and Construction

Sensor Layout

- All sensors produced on 6" wafer process
- Resulting in 6 EC sensor types:
 - R0 to R5
 - Radial strip arrangement with 20mrad offset
 - Pitch between 69 and 84µm
 - Strip count ranging from 2052 to 3592
- 2 Barrel sensor types:
 - 1280 strips at 75.5µm pitch in a column
 - Long Strip: 2 columns of 49mm strips
 - Short Strip: 4 columns of 24mm strips
- Current prototypes:
 - ATLAS12EC R0
 - ATLAS17LS (ATLAS18SS)
- test structures at periphery
 - 10x10mm mini sensors
 - Short Strip mini
 - Long Strip mini

Å

Sensor build specifications

- *n*+-*in-p* high resistivity bulk
- 320µm thickness
- designed for partial depletion at end of life (EOL)
- p-stop traces in between strip implants
 - R_{bias} and Punch-Through Protection structures embedded in sensor
- AC coupled readout

Results on Irradiated Samples

Irradiation facilities

- CERN PS: 24 GeV p beam
- CYRIC, Tokohu Uni: 70 MeV p
- Birmingham: 28 MeV p
- Karlsruhe IT: 23 MeV p
- TRIGA, Ljubljana: reactor n
- FZU, Prague: 60Co γ

Bulk property: Charge Collection Efficiency

- Collimated ⁹⁰Sr β⁻ radiation to stimulate mini sensor and trigger r/o
- Low-noise analog readout
- Landau curve fits to extract charge
- Normalize using standardized unirradiated mini sensors
- 1.6x10¹⁵ 1MeV *n*-eq max fluence includes 1.5x safety factor
- 7500e- expected MIP charge at endof life achieves signal to noise ratio of 12 : 1

17/02/2020

Bulk degradation: p vs n data

- Data shows more CCE reduction for *n* than *p*
- Neutron data used as End-of-Life performance benchmark:
 - *n* contributes > 50% of NIEL fluence
- Good agreement between A12 and A17 sensor revisions for both *p* and *n* data
 Bart Hommels Cavendish Laboratory

STD vs reduced thickness data

A number of A17 sensor prototypes have active thickness • reduced from 300 to 240um

1000

120

Bias (V)

- deep-diffusion of p implant at back of sensor
- Thin sensors have similar CCE at EOL •
- Minimum thickness requirement can be relaxed •

Surface damage effects

p, *n* 1.4x10¹⁴...1x10¹⁶

¥ 17...70 MRad

unirradiated

T = -20°C RH ~ 0%

Main concerns: specifications

- Microdischarge onset: none < 500V
- Strip isolation: R_{int} : >10x R_{bias}
- Inter-strip capacitance C_{int:} >0.7 pF/cm
- PTP onset: $10V < V_{PTP} < 50V$

...all within specifications

10-4

10

10-8

10⁻¹⁰

10-12

leakage current (A)

Long-Term Operation

Humidity sensitivity

• Instability of leakage current attributed to humidity (RH)

ATI AS

- $RH\uparrow$ $V_{breakdown}\downarrow$
- Reversible process
- Long term biasing in high RH has resulted in irreversible damage in several sensors

Breakdown imaging

- SWIR imaging to pinpoint breakdown
- Edge metal-guard ring gap
- Sensor edge geometry design verified passivation?
- Working with manufacturer to mitigate issue
 Bart Hommels Cavendish Laboratory

17

- C_{int} increases with time for V below constant V_{bias}
- Settling time O(hours) at RT, strong T dependence
- C_{int} dominant contribution to FE noise
- Effects on efficiency/noise and cluster size confirmed using test beam data
- Important when lowering V_{bias} during cold operation
 17/02/2020 Bart Hommels Cavendish Laboratory

Sensor Quality Control

images from SCT sensors rejected during QC – D.Robinson

Tests on every sensor

- Visual inspection: check for obvious defects
- Surface profile: confirm sensor shape as suitable
- Visual Capture: capture the sensor state at delivery
- I-V scan: reverse bias sensor "health check"
- **C-V scan:** confirm $V_{depletion}$, wafer resistivity, active thickness

Tests on sample sensors

- Leakage current stability: 500 V_{bias} for 24..40 hr
- Full Strip Test between strip metal and bias rail:
 - 10V to check for shorts
 - 100V to check for oxide pinholes
 - LCR meter to measure R_{bias}-C_{coupling} circuit
 - single channel or probecard operation

Bart Hommels - Cavendish Laboratory

Barrel Sensor Strip Test Results

1/10212020

- About 700k barrel sensor channels probed so far
- Good test reliability
- Picked out sensors with defects
- Channel yield >99.9%
- achieved test rate of 1800 ch/hr using 32ch probecard on barrel sensors

full batch results: 22 sensors

Summary

Summary and conclusions

- Current ITk strip sensor design result of long R&D and prototyping programme
- Extensive verifications indicates radiation hardness sufficient for application
- Studies of long-term sensor stability show good sensor performance
- Excellent uniformity between sensors and channels on sensor
- Project moving into Pre-Production phase:
 - Focus now on Quality Control, Quality Assurance

Backup

Capacitative DLTS for trap spectroscopy

Deep Level Transient Spectroscopy usually employed to study bulk devices:

- bias pulse to saturate states
- monitor decline (I, V or C) to map relaxation to thermal equilibrium

Here: use C_{int} saturation effects as bias pulse, monitor C_{int} relaxation to estimate trap energies

- Long-duration runs at different temperatures
- Constant environment: RH ~ 1% to suppress humidity related effects

DLTS results: trap characterisation

- Estimated trap energies relatively high O(1 eV), cross sections low
- Strong dependence on humidity
- Multiple apparent traps point to complicated "charge imprint" processes in Si-SiO2 layer
- TCAD simulations to correlate supposed device model with measurements
- Processes reversible and akin to those at play when irradiating & annealing

Consequences for ITk operation

- Sensors sensitive to humidity: keep dry
- Awareness of hysteresis effects important when changing $V_{\mbox{\tiny bias}}$ during operation
- In cold, dry conditions, sensor surface conditions only settle on time scales of many days
- Mostly a concern at beginning of ITk operations