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Introduction
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ATLAS Upgrade: the Inner Tracker (ITk)

All-Silicon Tracker with Barrel & Endcap layout

– Pixel inner layers

– Strips outer layers

● Barrel:

– short & long strip rectangular sensors

– 2 double-sided layers of each

● Endcap:

– Radial Strip orientation in endcap

– 6 double-sided discs

● 17888 Sensors covering ~ 200m2 area

● See talk by Craig Sawyer later today

BARREL ENDCAP

This talk

https://indico.cern.ch/event/813597/contributions/3727954/
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Radiation environment
● Highest expected fluence:

– 10.6x1014 1 MeV n-equivalent for endcap

– 6x1014 n-eq for barrel

● Design & test to fluence with safety factor 1.5

● Bulk damage:

– reduced charge collection

– increased leakage current

● Surface damage:

– charge accumulation in SiO2 layers

– local breakdown

– reduction of strip isolation

● Radiation hardness verification using reactor neutrons, 
proton beams, gamma sources
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Sensor Layout and Construction
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Sensor Layout
● All sensors produced on 6” wafer process

● Resulting in 6 EC sensor types:

– R0 to R5

– Radial strip arrangement with 20mrad offset

– Pitch between 69 and 84µm

– Strip count ranging from 2052 to 3592

● 2 Barrel sensor types:

– 1280 strips at 75.5µm pitch in a column

– Long Strip: 2 columns of 49mm strips

– Short Strip: 4 columns of 24mm strips

● Current prototypes: 

– ATLAS12EC R0

– ATLAS17LS (ATLAS18SS)

● test structures at periphery

– 10x10mm mini sensors

– Short Strip mini

– Long Strip mini ATLAS17LS

R5

R0
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● n+-in-p high resistivity bulk

● 320µm thickness

● designed for partial depletion at 
end of life (EOL)

● p-stop traces in between strip 
implants

● Rbias and Punch-Through 
Protection structures embedded 
in sensor

● AC coupled readout

Sensor build specifications
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Results on Irradiated Samples
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Irradiation facilities

● CERN PS: 24 GeV p beam

● CYRIC, Tokohu Uni: 70 MeV p

● Birmingham: 28 MeV p

● Karlsruhe IT: 23 MeV p

● TRIGA, Ljubljana: reactor n

● FZU, Prague: 60Co ɣ
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Bulk property: Charge Collection Efficiency

● Collimated 90Sr β- radiation to 
stimulate mini sensor and trigger r/o

● Low-noise analog readout

● Landau curve fits to extract charge

● Normalize using standardized 
unirradiated mini sensors

● 1.6x1015 1MeV n-eq max fluence 
includes 1.5x safety factor

● 7500e- expected MIP charge at end-
of life achieves signal to noise ratio 
of 12 : 1

500 V
bias

Alibava
Daughter board
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Bulk degradation: p vs n data

● Data shows more CCE reduction for n than p

● Neutron data used as End-of-Life performance benchmark:

– n contributes > 50% of NIEL fluence

● Good agreement between A12 and A17 sensor revisions for both p and n data

fluence (1MeV n
eq

/cm2)
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STD vs reduced thickness data

● A number of A17 sensor prototypes have active thickness 
reduced from 300 to 240um

– deep-diffusion of p implant at back of sensor

● Thin sensors have similar CCE at EOL

● Minimum thickness requirement can be relaxed
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Surface damage effects
Main concerns: specifications

● Microdischarge onset: none < 500V

● Strip isolation: Rint : >10x Rbias

● Inter-strip capacitance Cint : >0.7 pF/cm

● PTP onset: 10V < VPTP < 50V

...all within specifications

p, n 1.4x1014...1x1016

Ɣ 17...70 MRad

unirradiated

C
in

t(p
F

)

le
a

ka
g

e 
cu

rr
en

t 
(A

)

R
es

is
ta

n
ce

 (
M

Ω
)

R
in

t (
M

Ω
)

V
bias

 (-V)

V
test

 (V)
Total Ionising Dose (Gy)



Bart Hommels - Cavendish Laboratory17/02/2020 15

Long-Term Operation
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Humidity sensitivity

● Instability of leakage current attributed to humidity (RH)

● RH↑ - Vbreakdown↓

● Reversible process

● Long term biasing in high RH has resulted in irreversible 
damage in several sensors
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Breakdown imaging

● SWIR imaging to pinpoint breakdown

● Edge metal-guard ring gap

● Sensor edge geometry design verified – passivation?

● Working with manufacturer to mitigate issue
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Hysteresis effects in Cint
C
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● Cint increases with time for V below constant Vbias

● Settling time O(hours) at RT, strong T dependence

● Cint dominant contribution to FE noise

● Effects on efficiency/noise and cluster size confirmed 
using test beam data

● Important when lowering Vbias during cold operation
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Sensor Quality Control

images from SCT sensors rejected during QC – D.Robinson
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Tests on every sensor

● Visual inspection: check for obvious defects

● Surface profile: confirm sensor shape as suitable 

● Visual Capture: capture the sensor state at delivery

● I-V scan: reverse bias sensor “health check”

● C-V scan: confirm Vdepletion, wafer resistivity,  active thickness
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Tests on sample sensors

● Leakage current stability: 500 Vbias for 24..40 hr

● Full Strip Test between strip metal and bias rail:

– 10V to check for shorts

– 100V to check for oxide pinholes

– LCR meter to measure Rbias-Ccoupling circuit

– single channel or probecard operation
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Barrel Sensor Strip Test Results
single sensor results

full batch results: 22 sensors
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● About 700k barrel sensor 
channels probed so far

● Good test reliability

● Picked out sensors with 
defects

● Channel yield >99.9%

● achieved test rate of 1800 
ch/hr using 32ch probecard 
on barrel sensors
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Summary
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Summary and conclusions

● Current ITk strip sensor design result of long R&D and prototyping 
programme

● Extensive verifications indicates radiation hardness sufficient for application

● Studies of long-term sensor stability show good sensor performance

● Excellent uniformity between sensors and channels on sensor

● Project moving into Pre-Production phase:

– Focus now on Quality Control, Quality Assurance
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Backup
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Capacitative DLTS for trap spectroscopy

Deep Level Transient Spectroscopy usually employed to 
study bulk devices:

● bias pulse to saturate states

● monitor decline (I, V or C) to map relaxation to 
thermal equilibrium

Here: use Cint saturation effects as bias pulse, monitor 
Cint relaxation to estimate trap energies

● Long-duration runs at different temperatures

● Constant environment: RH ~ 1% to suppress 
humidity related effects
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DLTS results: trap characterisation

● Estimated trap energies relatively high O(1 eV), cross sections low

● Strong dependence on humidity

● Multiple apparent traps point to complicated “charge imprint” processes in Si-SiO2 layer

● TCAD simulations to correlate supposed device model with measurements

● Processes reversible and akin to those at play when irradiating & annealing



Bart Hommels - Cavendish Laboratory17/02/2020 28

Consequences for ITk operation

● Sensors sensitive to humidity: keep dry

● Awareness of hysteresis effects important when changing Vbias during 
operation

● In cold, dry conditions, sensor surface conditions only settle on time 
scales of many days

● Mostly a concern at beginning of ITk operations
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