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Iniroduction: neutrino masses

*Neutrinos are massless in the Standard Model
*There is no right-handed neutrino.

*However, neutrino masses are well established by
oscillation experiments

*Entering the precision era (~2% error in 0,5)
Wny so srall rasses?

Are neutrinos Dirac or Majorana?



Iniroduction: seesaw mecnanism

*Most popular answer is the seesaw mechanism.

*Smallness of neutrino masses Is related to the
heaviness of messenger fields.
*Many variants: Types |, Il and lll, inverse, linear...

*Typically leads to Majorana neutrinos - Not necessarily!

*If neutrinos are Dirac, an extra symmetry is needed to
forbid the tree level neutrino mass.

Majorana seesaw:

Dirac seesaw: Minkowski 1977

SCC, Ma, Srivastava, Valle 1606.04543 Gellman-Ramond-Slansky
SCC, Srivastava, Valle 1606.06904, Mohapatra-Senjanovc 1980
1706.00210, 1802 05722, 1804.03181 Schechter-Valle 1980 / 1982

Mohapatra-Valle 1986
And many others...



Introcluction: Wny Dirac Neuirinos?

*Black box theorem: neutrinoless double beta
decay implies Majorana mass term

*No experimental signature (yet)
*Both possibilities are open Dirac & Majorana

* Vp may be needed for UV completion just as In
some Majorana seesaws

*Dirac scenario is as rich as the Majorana one

Schechter-Valle 1982



Introcluction: Dirac vs Majorana

*We denote a fermion as ‘Majorana fermion’ when it is
Indistinguishable from its own antipatrticle.

*Conserved charges are key in determining if a fermion is Dirac or
Majorana.

*All fermions in the SM (except for neutrinos) have non-zero
electric charge - Dirac fermions.

‘Symmetries of mass terms play a key role.

Dirac mass terms conserve Abelian symmetries: ¥ W

*Majorana mass terms break them (except in special cases):
Yoy



Ingredients for Dirac Neuirinos

*Majorana mass terms must be forbidden.

*Not only tree-level terms but also all effective
higher order operators leading to Majorana mass.

*This requires an extra symmetry to protect
‘Diracness’.



Darg ratier proolem

*Galactic rotation profiles

*Large scale structure

*Galaxy clusters gravitational mass
‘CMB

*‘Negative experimental result (yet)

*Stabllity of the DM candidate sometimes needs an
extra symmetry



New syrmmeiries needed

*Dirac neutrinos need a symmetry to protect Diracness

*Dirac seesaw needs a symmetry to forbid tree-level
mass term

*Dark matter requires a new symmetry for stabilization

()
ol

nwe use less tnan 3
syrrneiries?
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Quarticity Z, syrnrnetry

*This symmetry is closely related with lepton number
conservation: discrete version of lepton number or B-L

*Must be an exact symmetry

*All leptons transform as z (z4 =1).

.LIJi ~ Z.
All scalars carrying a vev transform as the identity: Z,
must not be spontaneously broken.

SCC, Ma, Srivastava, Valle 1606.04543



Dirac neutrinos

*All leptons transform as z and scalars with vev as the identity.

‘W~z If<X>#0 -5 X~1.
*Fermions must appear in pairs due to Lorentz symmetry:

YW ~ 27
W W~ 1
‘Therefore
“WEX"Y™.. W~ z° . Majorana mass terms are forbidden

W XY™ W, ~ 1- Dirac mass terms are allowed by Z,.



Dary matier staollity

*Reminder: All leptons transform as z and all scalars
with vev transform as the identity.

‘W~z If<X>#20 -5 X~1
*Up to this point, all Lorentz invariant structures
transform as even powers under Z,

*A new scalar ¢ transforming as an odd power will
be stable:

(WS W) (W W) XP... ~ 2° & Zcannot decay



Dary matier staollity




Quarticity Z4 syrnrneitry

*Connection between the Diracnhess of
neutrinos and DM stabillity.

*‘Deeply related with lepton number (or
B-L).

*Dirac seesaw needs an extra symmetry
— Open door for flavour symmetries

SCC, Srivastava, Valle 1606.06904

SCC, Ma, Srivastava, Valle 1606.04543 SCC, Srivastava, Valle 1706.00210



exarmple rmodel: Dirac Type |

sScesScl

*Quarticity symmetry Is imposed to ensure
Diracness of neutrinos.

*Heavy neutral Dirac fermion, singlet under SU(2),
IS introduced: N, and N - seesaw!




Exarmple model: Dirac Type |

sScesScl

*A new SU(2), singlet scalar with non-zero vev Is
needed for neutrino mass: X - coupling between
N X Vg
*Leading order contribution to neutrino masses.:
(®) (X)

| |

I I

I I




Exarmple model: Dirac Type |
seesaw

*An extra symmetry Is needed to forbid the tree level
term L ®° vg.

*A simple Z, can do the job - simple model 1606.04543

‘Bigger symmetry groups can lead to flavour
predictions: A(27) 1606.06904, A, 1706.00210.

i '\\,’ SCC, Ma, Srivastava, Valle

B 1606.04543

. | : SCC, Srivastava, Valle 1606.06904
. ! G SCC, Srivastava, Valle 1706.00210
I_4Si“le“n'hh 0.58

Plot extracted from Srivastava,
Figure 1: Allowed regions at 2, 3 and 4o in the plane #33-0cp within the model, given the Tel‘nes, TC')I"[Ola, Va”e 171110318

current global neutrino oscillation analysis.


https://arxiv.org/abs/1606.04543
https://arxiv.org/abs/1606.06904
https://arxiv.org/abs/1706.00210

Dary secior

*The ‘dark sector’ of the model also includes a

real scalar n~z% which connects the dark and the
visible sectors:




(D
Q
G
=

rliggs porial to the dark s

*The Higgs boson can decay into two DM particles
(invisible decay)

*Nuclear recoil mediated by the Higgs boson

CiD
C

Figure 3. The diagrams for invisible Higgs decay to two dark matter particles and direct detection

of dark matter through Higgs mediated nuclear recoil.



Exarmple model: Dirac Type |

sScesScl

*Quarticity symmetry ensures both Diracness and
DM stability (higgs portal, WIMP DM).

*Needs an extra symmetry to forbid tree level
mass term and therefore having natural small
masses implementing a Dirac seesaw. This extra
symmetry can be a flavour symmetry.
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Chiral anornaly free B-L

*B-L already in SM as an ‘accidental symmetry’
*Exotic charges under B-L for Vg, forbid the tree level mass term.

*Neutrino masses come from a loop with extra vev insertions
and extra intermediate chiral fermions.

*The charges of the new particles must cancel the triangular
anomalies.

Cepedello, SCC, Peinado, Srivastava 1901.06402, 1812.01599
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Chiral anornaly free B-L

*The charges of the scalars with vev will determine the breaking pattern
of B-L
‘If U(1)g., breaks spontaneously to an even Z,then we can
have an stable scalar DM candidate.
°If the lightest particle in the loop iIs an scalar and has an
odd charge under Z, it will be stable due to Lorentz
Invariance and Z,..

*If neutrinos do not transform as n or 0 under the remnant
Z,. (note this is not possible with Z, - minimum group is Z,)

they are automatically Dirac particles.



Cniral anomaly free

* One symmetry to rule them all:

*Neutrinos are Dirac fields

*Stabi
*Smal

ity of Dark matter
neutrino masses via loops

r)

D=L



example model: B-L- Z_

O

*The charges of the particles in the example model
are given by

Fields|SU(2) @ U(1)y | U(1)p—L Z6
o || Li (2,-1/2) -, | T
-% VR, (1,0) (-4, -4, 5) ||(w?* w?, w?)
= || Ni, (1,0) —-1/2 w”®
= Ng, (1,0) —-1/2 w”®
| H (2,1/2) 0 1
2| x (1,0) 3 1
Sl (2,1/2) 1/2 W
£ (1,0) 7/2 W
*One can check that triangular anomalies are

cancelled (including gravity)



Example model: B-L- Z,

*1-loop neutrino masses and symmetry breaking
pattern:

X ,/ %\ A
n (1/2)* ¢ (7/2) SSB__o 1 (w),* € ()
.’ B-L Zg
L(-1) Ngr(-1/2) N (-1/2) wvg(-4) L (w*) Ng (@°) N () vg (W)
(a) U(1)g—r charge assignment. (b) Remnant Zg charge assignment.

Figure 2: Charge assignment for the example model and its spontaneous symmetry breaking pattern.

*The lightest scalar in the loop -for example n,- will be
stable. Easy to check in the right diagram after SSB.



Tare-nome ideas
* Neutrinos can be Dirac — open possibility

* A new symmetry to protect Diracness is needed -
Lepton number (or B-L) is a natural option.

 Seesaw mechanism is compatible with Dirac
neutrino masses.

* There can be a deep connection between Diracnhess
and dark matter stability - Example: Quarticity
symmetry

* Chiral, anomaly-free B-L can lead to smallness of
neutrino mass, Dirac neutrinos and stable DM without
the need of extra symmetries (explicit or
accidental).



Than« you for your attention

*Questions?

*References:

*Dirac Neutrinos and Dark Matter Stability from Lepton Quarticity. SCC, Ernest
Ma, Rahul Srivastava, José W.F. Valle. Phys.Lett. B767 (2017) 209-213.

*CP violation from flavor symmetry in a lepton quarticity dark matter model.
SCC, Rahul Srivastava, José W.F. Valle. Phys.Lett. B761 (2016) 431-436.

*Generalized Bottom-Tau unification, neutrino oscillations and dark matter:
predictions from a lepton quarticity flavor approach. SCC, Rahul Srivastava,
José W.F. Valle. Phys.Lett. B773 (2017) 26-33.

*Scotogenic dark matter and Dirac neutrinos using only Standard Model
symmetries Ricardo Cepedello, SCC, Eduardo Peinado, Rahul Srivastava
1812.01599
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SUB) LU — I (B—L)g — Y (B-L)g
q q

SU@L UM = Y (B-Ly, +3 5 (B-L),
{ i

Uy UN)s- = Y [Y2(B-L), +3Y2 (B-L)y] - Y[V (B—Lyz +3Y2 (B- L)g]
l.q l.q
Uy WMWp-o]' = Y [V (B-L), +3Ye (B- 1), ] = ) [Vie (B— )i, +3Yye (B L),]
l.q l.q
UWs-® - Y [(B-L} +3(B-L)j] - [(B-L), +3(B-L),]
l.q la

Gravity]* [U(1)p—] = Y _[(B=L)i, +3(B—L)g] = Y _[(B— L)z +3(B — L))
l.q la
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