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Introduction

� In the scenarios of cold Dark Matter (DM) production, the WIMP
has a constant mass

� But all masses in the Standard Model (SM) arise by Higgs
Mechanism

=⇒ More natural to assume an Higgs-like mechanism to
generate DM mass

� Consequences :

• The DM-Mass vary in time

• To account for the DM relic abundance, the cross-section
DM-SM can be 1 or 2 orders of magnitude larger
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Working principle

� Dark sector includes :

• A dark matter fermion ψ (Dirac, Majorana,...) that will
yield the relic density

• A scalar φ that will not participate to the relic density

• ψ has a Yukawa mass yφ

� At some early epoch (after inflation) they are in thermal
equilibrium with the SM

� Compute the quantum effective potential of φ at finite temperature

T > Tc : 〈φ〉 = 0 =⇒ mψ = 0

T < Tc : 〈φ〉 6= 0 depends on T =⇒ mψ = y〈φ〉

3 / 19



1

10−1 100 101 102

10−1

100

101

102

103

104

x = Tc/T

T
[G

eV
]

T
mφ
mψ

10−1 100 101 102
100

101

102

103

104

105

x = Tc/T

T
[G

eV
]

T
mφ
mψ

1

10−1 100 101 102

10−1

100

101

102

103

104

x = Tc/T

T
[G

eV
]

T
mφ
mψ

10−1 100 101 102
100

101

102

103

104

105

x = Tc/T

T
[G

eV
]

T
mφ
mψ

=⇒ Constant-Mass Freeze-out =⇒ Spontaneous Freeze-out (SFO)

E.g., for y = 10−2, µ = 10 GeV and λ = 103y2 = 0.1 or λ = 10−2y4 = 10−10
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Expectations

� For given mass m0
ψ and yield Y 0

ψ today
what are the differences between SFO and constant mass FO ?

At freeze-out mSFO
ψ < m0

ψ = mstandard FO
ψ

=⇒ T SFO < T standard FO

=⇒ Interactions with the SM must be stronger,
to maintain ψ in thermal equilibrium up to this lower T SFO

σSFO > σstandard FO

Since σ increases with mψ, this is even more the case today
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Related works and ideas

� The idea of temperature-dependent mass has already been used for
different purposes

• VAMPs (interaction DM-DE) [Aderson, Carroll, ‘97] [Rosenfeld, ‘05]

[Rosenfeld, Franca, ‘04]

• Flip-Flop Vev mechanisms [Baker, Breitbach, Kopp, Mittnacht
’

’18]

[Baker, Mittnacht, ‘18]

• Forbidden Freeze-In [Darmé, Hryczuk, Karamitros, Roszkowski, ‘19]

• Super-Cool DM [Hambye, Strumia, Teresi, ‘18]

• Superheavy WIMPS [Hui, Stewart, ‘95]

• ...
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Simplest model

� At tree level

Ltree = iψ̄�∂ψ +
1

2
(∂φ)2 − yφψ̄ψ − Vtree(φ)

+ LSM + Lint

Vtree(φ) = −µ
2

2
φ2 +

λ

4!
φ4 Z2 symmetric

• LSM is the SM Lagrangian

• Lint couples ψ and φ to the SM
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� We add to Vtree the 1-loop free energy +
Coleman-Weinberg effective potential of φ and ψ

• Taking 2 derivatives of Vtree =⇒ m2
0 = −µ2 +

λ

2
φ2 , mψ = yφ

F(T, φ) = −π
2
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VCW(φ) =
m4

0
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[
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− nF
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ψ

64π2
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log
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− 3

2

]
where α=π2 exp(3/2−2γE)

• At high T , the (thermal mass)2 of φ is positive =⇒ 〈φ〉 = 0

• =⇒ Z2 symmetry is restored : Thermal loops dominate the tree
level contribution : Perturbation theory breaks down

8 / 19



� The high T quantum corrections are dominated by the
“ring diagrams”, with arbitrary number of loops [Dolan, Jackiw,

’74] [Carrington, ’92][Delaunay, Grojean, Wells, ’07][Martin, ’14][Elias-Miró,

Espinosa, Konstandin, ’14]. . .

=⇒ Add Vth
ring(T, φ) =

T

12π

[(
m0(φ)2

) 3
2 −

(
m0(φ)2 + Πφ(T )

) 3
2

]
where the mass shift Πφ is the dominant thermal correction to m2

0

arising from F

Πφ(T ) =
T 2

24
(λ+ nF y

2)
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� The thermal effective potential becomes

Vth
eff(x, φ) = V0(x)− µeff(x)2

2
φ2 +

λeff(x)

4!
φ4 ,

where x ≡ Tc
T
, Q = πe−γETc

Tc =
2
√

6µ√
λ+ nF y2

√√√√1−
√

6
8π ξ + log 2

8π2 λ

1−
√

6
4π ξ

, ξ ≡ λ√
λ+ nF y2

µeff(x)2 = µ2

[(
1−
√

6

8π
ξ +

log 2

8π2
λ

)(
1− 1

x2

)
− λ

16π2
log x

]
,

λeff(x) = λ

(
1− 3

√
6

8π
ξ +

3 log 2

8π2
λ

)
+

3

16π2

(
4nF y

4 − λ2
)

log x .

=⇒ x < 1 : 〈φ〉 = 0 , x > 1 : 〈φ〉 = µeff(T )

√
6

λeff(T )
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Freeze-out

� What we said is valid until ψ or φ freezes out

� Assumption :

• ψ is maintained in thermal equilibrium with the SM by
contact interactions

ψ̄

ψ

f̄SM

fSM

nψ〈σSM↔ψψ̄ v〉 > H

• φ remains in thermal equilibrium even after freeze-out of
ψ, thanks to interactions with the SM (see below)
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� We have a “Spontaneous Freeze-Out” when Tc & TFO

Define xFO ≡
Tc
TFO

and κ =
mψ(xFO)

TFO
= O(20–30) in practice

λ� nF y
2 =⇒ xFO ' O

(2κ

y

)
� κ ,

λ� nF y
2 =⇒ 1 < xFO '

[
1 + κ2

( 4λ

nF y4
+

3

π2
log xFO

)]1/2

. κ when
4λ

nF y4
< 1 : “Spontaneous FO”

� The regime 1 . xFO � κ is excluded because we need the effective
potentiel at T = 0 to admit a minimum 〈φ〉 > 0, which imposes

4λ

nF y4
>

3

2π2

(
log

2

3
+ 2γE

)
' 0.12

� Spontaneous FO ⇐⇒ xFO ' κ ⇐⇒ 0.12 <
4λ

nFy4
< 1
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Numerical simulations

� Specify interactions

OV = GV ψ̄γµψf̄γ
µf or OS = GS ψ̄ψf̄f , where f is a SM fermion

� Thermally averaged cross section

〈σv〉V '
G2
V

2π

(
1 +

x−1Tc
mψ(x)

)
m2
ψ(x) s-wave

〈σv〉S '
3G2

S

8π
x−1Tcmψ(x) p-wave

� Solve Boltzmann equation

dYψ
dx

=
〈σv〉s
xH

(Y 2
ψ,eq − Y 2

ψ ) , Yψ =
nψ
s

Scan over the parameter space µ, λ, y, GV,S such that the
correct relic density is obtained
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� For OV (s-wave) : Cross section as fonction of mass, today
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� For OS (p-wave)
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� Increase of DM mass

xFO ' 1.1 =⇒ m0
ψ ' 2mψ(xFO)
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Thermalization of φ

� We have assumed φ is in thermal equilibrium with the SM

• Before phase transition, ψ is massless =⇒ inverse decay

ψ̄

ψ

φ

• After phase transition, it is model-dependent:
E.g.

φ

fSM

f̄SM

ψ̄

ψ

y GS

or coupling to the Higgs
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� The decay of φ

=⇒ Increases the damping of the oscillations of φ in the well
of its thermal effective potential

=⇒ helps 〈φ〉 to track the T -dependent minimum

� Without decay, when T < mass of φ, the energy stored in
the oscillations of φ contributes as the energy density of
massive matter

=⇒ overclose the universe [Preskill, Wise, Wilczek, ’83] [Abbott, Sikivie,

’83] [Dine, Fischler, ’83] [Coughlan, Fischler, Kolb, Raby, Ross, ’83] [Ellis,

Nanopoulos, Quiros, ’86]
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Conclusion

� Masses in the dark sector might be generated by the
spontaneous breaking of some global or gauge symmetry

• At high T , the symmetry is restored

• At T = Tc, the 2nd order phase transition triggers the
Spontaneous Freeze Out of the dark matter, provided its mass has not
reached its constant value yet

� The cross section necessary to generate the correct DM
relic abundance is larger than in the constant mass WIMP
scenario

� Unitarity bounds of the WIMP cross section is overshot
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