First results from the KATRIN experiment

Prof. Dr. Susanne Mertens
Technical University Munich & Max Planck Institute for Physics
Neutrino mass

Upper bound from laboratory measurements

Lower bound from oscillation experiments
Neutrino mass

Cosmology

model-dependent

potential: $m_\nu = 15$-50 meV
e.g. Planck

$$m_{\text{cosmo}} = \sum_i m_i$$

Search for $0\nu\beta\beta$

Laboratory-based

potential: $m_{\beta\beta} = 15$-50 meV
e.g. LEGEND

$$m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right|$$

Kinematics of β-decay

Laboratory-based

potential: $m_\beta = 50$ - 200 meV
e.g. KATRIN

$$m_\nu^2 = \sum_i |U_{ei}|^2 \cdot m_i^2$$
General idea

• Kinematic determination of the neutrino mass
• Non-zero neutrino mass distorts the spectrum close to the endpoint
General idea

- Kinematic determination of the neutrino mass
- Non-zero neutrino mass distorts the spectrum close to the endpoint

\[m^2(\nu_e) = \sum_i |U_{ei}|^2 \cdot m_i^2 \]
The challenge

Key requirements:

• Ultra-strong β-source (10^{11} cps)
• Excellent energy resolution (~ 1 eV)
• Low background level (~ 10 mcps)
• Precise understanding of spectrum

Only 10^{-13} of all decays in last 1 eV
Where do we stand?

• Limit before KATRIN 1st Results: Mainz and Troitsk Experiment
Where do we stand?

• Limit before KATRIN 1st Results: Mainz and Troitsk Experiment

• Ongoing experiments:
 Distinguish between degenerate and hierarchical scenario
Where do we stand?

- Limit before KATRIN 1st Results: Mainz and Troitsk Experiment

- Ongoing experiments:
 Distinguish between degenerate and hierarchical scenario

- New ideas:
 Resolve normal vs inverted neutrino mass hierarchy
Karlsruhe
Tritium
Neutrino
Experiment
• Experimental site: Karlsruhe Institute of Technology (KIT)
• International Collaboration (150 members)
• Sensitivity $m_\nu = 0.2 \text{ eV (90\% CL)}$ after 3 net-years
KATRIN Working Principle

<table>
<thead>
<tr>
<th>3H</th>
<th>super-allowed β-decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{1/2}$</td>
<td>12.3 years</td>
</tr>
<tr>
<td>E_0</td>
<td>18.6 keV</td>
</tr>
</tbody>
</table>

High intensity tritium source (10^{11}/s)

70-m long

High resolution spectrometer (~1eV)
KATRIN Working Principle

- High stability and luminosity
 \(10^{11}\) decays/sec

- \(\beta\)-decay

- Windowless Gaseous Molecular Tritium Source
KATRIN Working Principle

- Tritium flow reduction by 14 orders of magnitude
- β-decay
- Differential pumping = active pumping by TMPs
- Cryogenic pumping = cryosorption on Ar-frost
KATRIN Working Principle

Electrostatic filter selects high energy electrons

β-decay

Spectrometer Section
KATRIN Working Principle

Integral measurement down to 40 eV below the endpoint

148-pixel Si focal plane detector

β-decay

Model
Measurement
KATRIN Working Principle

excellent energy resolution: \(\sim 1\ \text{eV}\)

large angle acceptance: \(\sim 50^\circ\)

\(\beta\)-decay

Magnetic adiabatic collimation + electrostatic filter (MAC-E)
KATRIN (in real)

Windowless gaseous tritium source

Differential pumping section

Large Air Coil System

Detector system

Cryogenic pumping section

Inner electrode system
18-years of KATRIN history

Letter of Intent	Main spectrometer	Krypton calibration	First neutrino mass
Design Report | First light | First tritium

Susanne Mertens
18-years of KATRIN history

Letter of Intent 2001
Main spectrometer 2004
Krypton calibration 2006
First neutrino mass 2016
Design Report 2016
First light 2017
First tritium 2018

Susanne Mertens
KATRIN neutrino mass campaign #1 (KNM-1)

• First ever high-activity tritium operation of KATRIN
• April 10 – May 13 2019: 780 h (~4 weeks)
• high-quality data collected 2 million electrons

☑ First neutrino mass result 😊

arXiv:1909.06048
Tritium source operation

- tritium gas density: 22% of nominal (burn-in period)
- high isotopic tritium purity: 97.5%
- high source activity: $2.45 \cdot 10^{10}$ Bq (24.5 GBq), throughput: 4.9 g/day
Tritium source operation

- Electron gun
- Laser Raman Cell
- Forward beam monitor
- Krypton sources
Spectrometer operation

- interval: \(E_0 - 40 \text{ eV} , E_0 + 50 \text{ eV} \)
- \# HV set points: 27
- scanning time: 2 hours
- Number of scans: 274
- Sequence of scans: alternating up/down
- HV stability: 20 mV (ppm-level)

➢ One β-decay spectrum for each scan
Stable operation

- Scan-wise analysis
- Neutrino mass fixed to zero
- Effective endpoint stable over time
Tritium spectrum calculation

- Molecular final states
- Theoretical corrections
- Doppler broadening
- ...

\[I(qU) = \int_{qU}^{E_0} D(E)R(E, qU)dE \]

- Spectrometer resolution
- Scattering in the source
- Synchrotron radiation
- ...

Differential spectrum

Integral spectrum

Experimental response
3-fold bias free analysis

Freeze analysis on fake data
- Generate MC-copy of each scan

Blinded model
- Modified molecular final state dist.

Two independent analysis strategies
- Covariance matrix
- Monte Carlo propagation
Two independent analysis approaches

Covariance matrix
- Systematic: **Spectrum** computed 10^5 times
- $\chi^2 = (\vec{m} - \vec{d})^T V_{\text{tot}}^{-1} (\vec{m} - \vec{d})$

MC propagation
- Systematics: **Fit** performed 10^5 times
- $-2 \log L = 2 \sum_i [m_i - d_i + d_i \log(d_i/m_i)]$
Systematic uncertainties

- Column density x cross section
- Magnetic fields
- Energy loss
- Final state dist.
- Background-slope
- Non-Poisson background
- Stacking of scans
Budget of uncertainties

we are largely statistics dominated !!!
What do we expect to measure?

- If the neutrino mass was zero...
- ... and we would repeat KATRIN 1,000,000 times...
- 68% probability: m^2_ν in $[-1; +1]$eV2
- 95% probability: m^2_ν in $[-2; +2]$eV2
Final fit result

- 2 million events
- 4 free parameters: background, signal normalization, E_0, m^2
- Excellent goodness-of-fit:
 p-value = 0.56
- Blind-analysis,
 2 independent analysis methods
- Neutrino mass best fit:
 $m^2 = (-1.0^{+0.9}_{-1.1}) \text{eV}^2$
Final fit result

- 2 million events
- 4 free parameters: background, signal normalization, E_0, m_{ν}^2
- Excellent goodness-of-fit: p-value = 0.56
- Blind-analysis, 2 independent analysis methods

- Neutrino mass best fit: $m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{eV}^2$
- Improved upper limit: $m_{\nu} < 1.1 \text{ eV @ 90\% CL}$
Final fit result

- 2 million events
- 4 free parameters: background, signal normalization, E_0, $m^2_
u$
- excellent goodness-of-fit: p-value = 0.56
- Blind-analysis, 2 independent analysis methods

- Neutrino mass best fit: $m^2_
u = (-1.0^{+0.9}_{-1.1}) \text{eV}^2$
- Improved upper limit: $m_
u < 1.1 \text{ eV} @ 90\% \text{ CL}$
Historical context
Improvements in statistics

Squared neutrino mass Uncertainties obtained from tritium β-decay in the period 1990-2019

- Multi-year measurements
 - sub-eV frontier
 - 1st KATRIN Science Run
 - 5 days@100 GBq
 - KATRIN 3y@100 GBq
Improvements in systematics

Squared neutrino mass Uncertainties obtained from tritium β-decay in the period 1990-2019

- **sub-eV frontier**
- improvement x 6
- improvement x 10

Susanne Mertens
KATRIN backgrounds

Large surface
Large volume
Susanne Mertens

KATRIN backgrounds

Radon decays in the volume

Getter pump

Black Body Radiation

Rydberg atom

210Pb
KATRIN backgrounds

- Effective reduction of radon-induced background via nitrogen-cooled baffle system

 S. Goerhardt, et al., JINST 13 (2018) no.10, T10004

- Effective mitigation of Rydberg background by shifting analyzing plane

 not yet applied, under investigation at the moment

Susanne Mertens
KATRIN backgrounds

1. Effective reduction of radon-induced background via nitrogen-cooled baffle system
2. Effective mitigation of Rydberg background by shifting analyzing plane

✓ Successful test measurements show feasibility of the technique
Conclusion

- New World Best Direct Neutrino Mass Measurement: $m_\nu < 1.1$ eV (90% C.L.)
 - 2nd measurement campaign completed
 - Calibration runs ongoing
 - Final sensitivity of 0.2 eV reached after 5-years
Thank you for your attention

Prof. Dr. Susanne Mertens
Technical University Munich & Max Planck Institute for Physics