THE MICROBOONE EXPERIMENT AND THE LOW-ENERGY EXCESS

INTERNATIONAL CONFERENCE ON NEUTRINOS AND DARK MATTER

Wouter Van De Pontseele – On behalf of the MicroBooNE collaboration
January 11, 2019

University of Oxford, Harvard University
• **Three neutrino picture** is well understood.
• **Anomalous results** in past neutrino measurements.

1. The low-energy excess.
2. The MicroBooNE experiment.
3. Recent cross-section results.
4. The search for an anomaly.
Neutrino Beams at Fermilab

- Booster ν beam
 - MicroBooNE, SBN program
 - Proton energy: 8 GeV

- NuMI ν beam
 - NOvA, MINERvA, MINOS+

- DUNE ν beam
 - (planned)

Main Injector
- Proton energy: 120 GeV
1. **LSND** sees $\bar{\nu}_e$ appearance from a well understood $\bar{\nu}_\mu$ neutrino source [1].
1. **LSND** sees $\bar{\nu}_e$ appearance from a well understood $\bar{\nu}_\mu$ neutrino source [1].

2. **MiniBooNE** has different L, E, but similar $L/E \sim \text{LSND } \mathcal{O}(1 \text{ m MeV}^{-1})$.

The MiniBooNE Low-Energy Excess [2]
- In Fermilab’s Booster Neutrino Beam, since 2002.
- Mineral Oil Cherenkov detector.
- Excess of events observed, as in LSND.
A STEP BACK IN TIME: A PUZZLING COLLECTION OF ANOMALIES

1. **LSND** sees $\bar{\nu}_e$ appearance from a well understood $\bar{\nu}_\mu$ neutrino source [1].

2. **MiniBooNE** has different L, E, but similar $L/E \sim LSND \mathcal{O}(1 \text{ m MeV}^{-1})$.

The MiniBooNE Low-Energy Excess [2]
- In Fermilab’s Booster Neutrino Beam, since 2002.
- Mineral Oil Cherenkov detector.
- Excess of events observed, as in LSND.

3. **MicroBooNE**: same L, E with different technology.
PARTICLE IDENTIFICATION IN MINIBooNE

MiniBooNE sees an excess of low energetic electromagnetic events. No discrimination between a single photon and an electron + insensitive to protons. The origin of the excess remains unclear.

Wouter Van De Pontseele
MiniBooNE sees an excess of low energetic electromagnetic events. No discrimination between a single photon and an electron + insensitive to protons. The origin of the excess remains unclear.
Physics Goals

- Liquid Argon Time Projection Chamber (LArTPC) R&D.
- Address electromagnetic low-energy excess observed by MiniBooNE.
- Cross-section measurements on argon.
- First step in the Fermilab short baseline neutrino program.
MICROBOONE DATA EVENT

Run 5906, Subrun 74, Event 3710
MicroBooNE Data

Plane 0: Induction

Electromagnetic Shower

Plane 1: Induction

Proton Track

Plane 2: Collection
How to Resolve the Low-Energy Excess Anomaly

Detector Understanding
- Signal processing.
- Detector calibration.
- Event reconstruction.

Systematic Uncertainties
- Neutrino flux from beam.
- Cross-section modelling.
- Detector effects.

Neutrino-Argon Interactions
- First low-energy ν-Ar data, probe little known nuclear effects.
- π^0 production can mimic electrons.

Search for the Excess
- Different signatures:
 - e/γ
 - proton tracks, vertex activity
 - energy range
- Selection
- Statistical tests and methods
Three different reconstruction approaches in MicroBooNE:

- First time **fully automatic** event reconstruction used in LArTPC.
- Serve to **cross-check** each other in parallel efforts.
- Essential build-up of **expertise for DUNE, SBND and ICARUS**.
1. Determination of ν interaction rates.
2. Understand the nuclear model: neutrino-nucleus scattering model and intranuclear processes.
3. Comparison with generators: GENIE 2/3, NuWro, GiBUU.

→ Impact energy reconstruction.
→ Necessary for oscillation measurement.
1. Determination of ν interaction rates.
2. Understand the nuclear model: neutrino-nucleus scattering model and intranuclear processes.
3. Comparison with generators: GENIE 2/3, NuWro, GiBUU.

→ Impact energy reconstruction.
→ Necessary for oscillation measurement.
First Cross-section results from MicroBooNE

- Using Run 1 data-set, ≈13% of total POT collected.
- Measurement of ν_μ Charged-Current π^0 Production on Argon [6]
First Cross-section results from MicroBooNE

- Using Run 1 data-set, \approx13 % of total POT collected.
- Measurement of ν_μ Charged-Current π^0 Production on Argon [6]

Cross-section talk tomorrow by Steve Dytman!
TWO POSSIBLE MODELS TO EXPLAIN THE LOW-ENERGY EXCESS

Electron-like Search
Electron neutrinos from oscillation

Photon-like Search
Neutral current $\Delta \rightarrow N\gamma$
Unfolding the MiniBooNE excess (MICROBOONE-NOTE-1043-PUB)

Electron-like Search

Photon-like Search

Wouter Van De Pontseele
PARTICLE IDENTIFICATION: PHOTONS VS ELECTRONS

- \(e/\gamma \) separation due to differences in the start of the electromagnetic shower.

- Demonstrated using photons from \(\pi^0 \) decay [7].

1. \(dE/dx \)
2. Detached shower start point
• Neutral current \(\Delta \rightarrow N\gamma\) has never been measured in neutrino scattering → large cross-section uncertainties.

• Boosted decision trees to reject:
 1. Cosmogenic backgrounds
 2. Neutrino induced backgrounds

• **Dominating background** is neutral current \(\pi^0\)
 → Second shower difficult to reconstruct!

MICROBOONE-NOTE-1041-PUB
• ≈ 15k cosmic muons per neutrino interaction.
• ≈ 200 ν_μ per ν_e in the beam if no additional oscillations.

→ Needle in haystack situation!

• Blinded search: Selection being developed on 4% of the data (Booster Neutrino Beam).

• Covering all bases!
 Simultaneously targeting different final states:
 • $1e0\pi Np$: low energy, vertex activity, golden channel.
 • $1e0\pi0p$: lowest energy, difficult to select.
 • $1eX$: Inclusive channel, important model independent cross-check.

→ Current status: MICROBOONE-NOTE-1038-PUB
→ New results soon!
The Off-axis NuMI beam offers the chance to develop an inclusive electron neutrino selection at similar energy on a large data-set.
Constraining the Uncertainties with Muon Neutrinos

ν_μ and ν_e have much in common:

- **Flux:** both species of neutrinos come from the same beam, from decays of the same populations of hadrons.

 Dominant production modes:

 - ν_μ: $\pi^+ \rightarrow \mu^+ \nu_\mu$ \hspace{1cm} 94%
 - ν_e: $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ \hspace{1cm} 52%

 Other sources of systematic uncertainty:

 - **Cross-Section:** both neutrinos interact with argon nuclei.
 - **Detector:** systematic detector effects affect different channels in the same way.
→ **Reduced systematic uncertainties** in a combined analysis:

1. Using multiple selections and observables.
2. Taking into account correlated systematic uncertainties through a covariance matrix.
→ **Reduced systematic uncertainties** in a combined analysis:

1. Using multiple selections and observables.
2. Taking into account correlated systematic uncertainties through a covariance matrix.

Simulation-based exercise of **constraining the flux and cross-section systematics** on the ν_e selection using muon neutrinos.
THE SHORT BASELINE PROGRAMME (SBN) AT FERMILAB [8]

Sensitivity to the short-baseline anomaly
CONCLUSION

What MicroBooNE Has Archived So Far

- Fully automatic event reconstruction and LArTPC R&D!
- ν_μ Charged-Current inclusive double differential cross-section [5].
- Charged-Current π^0 measurement and π^0 mass peak [6].

Progress towards Low Energy Excess

- Explicit selections targeting both electron and photon channels.
- ν_μ sample is being used to constrain flux and cross-section uncertainties.
- First low energy excess result soon.

Wouter Van De Pontseele
THANK YOU!
& Questions

Neutrino Oscillations: The Current Picture

- Mixing between neutrino flavour and mass eigenstates: PMNS matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
= U(\theta_{12},\theta_{23},\theta_{13},\delta_{CP})
= \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]
Neutrino Oscillations: The Current Picture

- Mixing between neutrino flavour and mass eigenstates: PMNS matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} = U(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}) =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

- Propagation through vacuum over a length \(L \) for mass eigenstate \(\nu_i \):

\[
|\nu_i(L)\rangle \approx e^{-i \frac{m_i^2 L}{2E}} |\nu_i(0)\rangle.
\]
Neutrino Oscillations: The Current Picture

- Mixing between neutrino flavour and mass eigenstates: PMNS matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
= U(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}) \approx
\begin{pmatrix}
0.8 & 0.5 & 0.1 \\
0.3 & 0.7 & 0.6 \\
0.4 & 0.5 & 0.8
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

- Propagation through vacuum over a length \(L \) for mass eigenstate \(\nu_i \):

\[
|\nu_i(L)\rangle \approx e^{-i \frac{m_i^2 L}{2E}} |\nu_i(0)\rangle.
\]

The combination leads to neutrino flavour oscillations!

Wouter Van De Pontseele
Let’s add a sterile fourth neutrino to the game!

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau \\
\nu_S
\end{pmatrix}
= \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{S1} & U_{S2} & U_{S3} & U_{S4}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3 \\
\nu_4
\end{pmatrix}
\]
• Let’s add a sterile fourth neutrino to the game!

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau \\
\nu_S
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\
U_{S1} & U_{S2} & U_{S3} & U_{S4}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3 \\
\nu_4
\end{pmatrix}
\]

• Consider experiments where \(\frac{E}{L} \approx \Delta m^2_{41} \) and \(\Delta m^2_{41} \gg \Delta m^2_{21}, \Delta m^2_{32} \).

• If we are only sensitive to electron and muon flavours in the detector: \(U_{e4}, U_{\mu4} \) and \(\Delta m^2_{41} \).
NEUTRINO OSCILLATIONS & THE STERILE NEUTRINO HYPOTHESIS

- Let’s add a sterile fourth neutrino to the game!

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau \\
\nu_S
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\
U_{S1} & U_{S2} & U_{S3} & U_{S4}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3 \\
\nu_4
\end{pmatrix}
\]

- Consider experiments where \(E/L \approx \Delta m^2_{41} \) and \(\Delta m^2_{41} \gg \Delta m^2_{21}, \Delta m^2_{32} \).
- If we are only sensitive to electron and muon flavours in the detector:
 \(U_{e4}, U_{\mu4} \) and \(\Delta m^2_{41} \)

\[
P(\nu_e \rightarrow \nu_e) = 1 - 4(1 - |U_{e4}|^2) |U_{e4}|^2 \sin^2(1.27 \Delta m^2_{41} L/E) \quad (\nu_e \text{ disappearance})
\]

\[
P(\nu_\mu \rightarrow \nu_\mu) = 1 - 4(1 - |U_{\mu4}|^2) |U_{\mu4}|^2 \sin^2(1.27 \Delta m^2_{41} L/E) \quad (\nu_\mu \text{ disappearance})
\]

\[
P(\nu_\mu \rightarrow \nu_e) = 4 |U_{e4}|^2 |U_{\mu4}|^2 \sin^2(1.27 \Delta m^2_{41} L/E) \quad (\nu_e \text{ appearance})
\]
• Let’s add a sterile fourth neutrino to the game!

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau \\
\nu_S
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{S1} & U_{S2} & U_{S3} & U_{S4}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3 \\
\nu_4
\end{pmatrix}
\]

• Consider experiments where \(\frac{E}{L} \approx \Delta m^2_{41} \) and \(\Delta m^2_{41} \gg \Delta m^2_{21}, \Delta m^2_{32} \).

• If we are only sensitive to electron and muon flavours in the detector:

\(U_{e4}, U_{\mu 4} \) and \(\Delta m^2_{41} \)

\[
P(\nu_e \rightarrow \nu_e) = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2(1.27 \frac{\Delta m^2_{41} L}{E}) \quad (\nu_e \text{ disappearance})
\]

\[
P(\nu_\mu \rightarrow \nu_\mu) = 1 - 4(1 - |U_{\mu 4}|^2)|U_{\mu 4}|^2 \sin^2(1.27 \frac{\Delta m^2_{41} L}{E}) \quad (\nu_\mu \text{ disappearance})
\]

\[
P(\nu_\mu \rightarrow \nu_e) = 4|U_{e4}|^2|U_{\mu 4}|^2 \sin^2(1.27 \frac{\Delta m^2_{41} L}{E}) \quad (\nu_e \text{ appearance})
\]

Appearance and disappearance signals are related!
Radiochemical Experiments

- The SAGE and GALLEX experiments both observed a deficit of electron neutrinos with radioactive isotope sources.

Reactor Experiments

- 3.5% deficit of electron anti-neutrinos in several reactor experiments.

Accelerator Experiments

- Excess of electron neutrinos and anti-neutrinos in the LSND and MiniBooNE experiments.
Radiochemical Experiments

- The SAGE and GALLEX experiments both observed a deficit of electron neutrinos with radioactive isotope sources.

Reactor Experiments

- 3.5% deficit of electron anti-neutrinos in several reactor experiments.

Accelerator Experiments

- Excess of electron neutrinos and anti-neutrinos in the LSND and MiniBooNE experiments.

Hints towards sterile neutrino, but tension in global fits remains.
A STEP BACK IN TIME: THE LSND EXPERIMENT

Liquid Scintillator Neutrino Detector at Los Alamos

- $\bar{\nu}_\mu$ from μ^+ Decay at rest.
- 3.8σ excess consistent with ν_e appearance ($\Delta m \approx 1\text{eV}^2$).

Wouter Van De Pontseele
LIQUID ARGON TIME PROJECTION CHAMBER

Cathode Plane

Incoming Neutrino

Scintillation light

E_{drift}

Liquid Argon TPC

Sense Wires

U V Y

Fast light signal captured by 32 PMTs

Wouter Van De Pontseele
BACK TO REALITY: EVENTS CONTAIN A LOT OF COSMIC CHARGE DEPOSITS

Run 1463 Event 28. August 15th 2015 10:37

Wouter Van De Pontseele
Cosmic Activity @ MicroBooNE

- MicroBooNE is a surface detector.
- 5 kHz cosmic muon rate.
- Approximately 24 muons per triggered event

→ Cosmic activity is the dominant background!

MICROBOOONE-NOTE-1005-PUB
\(\nu_\mu \) and \(\nu_e \) have much in common:

- **Flux**: both species of neutrinos come from the same beam, from decays of the same populations of hadrons.
- **Cross-Section**: both neutrinos interact with argon nuclei.
- **Detector**: systematic detector effects affect different channels in the same way.

Strong **correlation** between the \(\nu_\mu \) and \(\nu_e \) cross-section at **low energies**.
MINIBoONE/LSND

Wouter Van De Pontseele
Figure 7
SBN 3σ (solid red line) and 5σ (dotted red line) sensitivities to a light sterile neutrino in the $\nu_\mu \rightarrow \nu_e$ appearance channel (left) and $\nu_\mu \rightarrow \nu_\mu$ disappearance channel (right). For comparison, the LSND preferred region at 90% C.L. (shaded blue) and 99% C.L. (shaded gray) is presented (19). Moreover, the global ν_e appearance (shaded red) and global ν_μ disappearance (black line) 3σ regions from Ref. (33) are also included. Finally, the 3σ global best fit regions from Ref. (35) are shown in green. The sensitivities are reproduced from the SBN proposal (15).
• ν_μ flux peaks at ≈ 0.8 GeV.
• Small ν_e component: $\approx 0.57\%$.

→ ν_e's from Kaons at lowest energies can be constrained by high energy ν_μ's.