

Status of 3-neutrino mass-mixing parameters

based on (Prog. Part. Nucl. Phys. 102 (2018) 48, Phys. Rev. D 95 (2017) no.9, 096014) + oscillation update 2019 in collaboration with E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo

FRANCESCO CAPOZZI

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

In a 3-neutrino framework we have 10 mass and mixing parameters

3 mixing angles

In a 3-neutrino framework we have 10 mass and mixing parameters

CP violation if $\delta \neq 0, \pi$

In a 3-neutrino framework we have 10 mass and mixing parameters

In a 3-neutrino framework we have 10 mass and mixing parameters

$$\Delta m^2 = m^2_3 - (m^2_2 + m^2_1)/2$$

atmospheric mass difference

$$\delta m^2 = m^2_2 - m^2_1 > 0$$

solar mass difference

In a 3-neutrino framework we have 10 mass and mixing parameters

Normal mass ordering (NO): $m_3 > m_2 > m_1$ and $\Delta m^2 > 0$

Inverted mass ordering (IO): $m_2 > m_1 > m_3$ and $\Delta m^2 < 0$

In a 3-neutrino framework we have 10 mass and mixing parameters

In a 3-neutrino framework we have 10 mass and mixing parameters

Global analysis of oscillation data

Prog. Part. Nucl. Phys. 102 (2018) 48 + OSCILLATION UPDATE 2019 in collaboration with E. Lisi, A. Marrone and A. Palazzo

Global analysis of oscillation data

We start from:

Long baseline reactors $\overline{\nu}_e$ —	→ Ve	(θ₁₂, δm², θ₁₃)
---	------	---

Analysis results: mass differences

Analysis results: mixing angles

Analysis results: CP violation

Analysis results: CP violation

Analysis results: CP violation

Analysis results: θ₂₃

Analysis results: θ₂₃

Analysis results: mass ordering

Global analysis of oscillation data

... Then we strongly constrain θ_{13} with ...

Analysis results: covariance (θ₂₃,θ₁₃)

Analysis results: covariance (θ₂₃,θ₁₃)

Analysis results: covariance (θ₂₃,θ₁₃)

Global analysis of oscillation data

... Then we strongly constrain θ_{13} with ...

... And we finally add the rich phenomenology of atmospheric neutrinos

Non-oscillation data

Phys. Rev. D 95 (2017) no.9, 096014) in collaboration with E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo

Non oscillation data: variables

Cosmology, β and $0\nu\beta\beta$ decays can probe:

$$\Sigma = m_1 + m_2 + m_3$$

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

$$m_{\beta}^{2} = \sum_{i=1}^{3} |U_{ei}|^{2} m_{i}^{2}$$

Non oscillation data: variables

Here we focus on Σ and $m_{\beta\beta}$

Only oscillation constraints, with $\Delta \chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

 $\Sigma(NO) > 0.06 \text{ eV}$ and $\Sigma(IO) > 0.1 \text{ eV}$

Oscillation + 0\nu\beta\beta constraints, with $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

Francesco Capozzi - Max Planck Institute For Physics

Oscillation + 0\nu\beta\beta + cosmology (conservative) constraints $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

Capozzi, Di Valentino, Lisi, Marrone, Melchiorri and Palazzo, Phys. Rev. D 95 (2017) no.9, 096014

Update in Progress

Francesco Capozzi - Max Planck Institute For Physics

Oscillation + 0\nu\beta\beta + cosmology (aggressive) constraints $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

Francesco Capozzi - Max Planck Institute For Physics

Oscillation + 0\nu\beta\beta + cosmology (aggressive) constraints $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(NO)$

 $\Delta \chi^2$ (IO - NO) = 11.7 > 10.2 from oscillations

Conclusions

Intense research activity in neutrino mass-mixing parameters

We have entered the precision era

Hint for CP violation (2σ) and for normal ordering (3σ)

Small hint in favour of the second octant of θ_{23}

Non oscillation data corroborates preference for normal ordering

The χ^2 depends on 7 parameters

 $\chi^2_{\rm osc} = \chi^2_{\rm osc}(\theta_{12}, \theta_{13}, \theta_{23}, \delta, \delta m^2, \Delta m^2, \operatorname{sign}(\Delta m^2))$

We define the $\Delta \chi^2$

$$\Delta \chi^2(\text{NO}) = \chi^2_{\text{osc}}(\Delta m^2 > 0) - \min[\chi^2_{\text{osc}}(\Delta m^2 > 0)]$$
$$\Delta \chi^2(\text{IO}) = \chi^2_{\text{osc}}(\Delta m^2 < 0) - \min[\chi^2_{\text{osc}}(\Delta m^2 < 0)]$$

We report the results in terms of

$$N\sigma = \sqrt{\Delta\chi^2}$$

Solar sector (θ_{12} , δm^2)

Daytime survival probability of v_e as a function of energy

Solar sector (θ_{12} , δm^2)

Day/Night asymmetry $\propto 1/\Delta m^{2}_{21}$

Δm²₂₁ ~ 5 x 10⁻⁵ eV²

Solar sector (θ_{12} , δm^2): KamLAND

Covariance (\theta_{12}, \delta m^2)

 $\sim 2\sigma$ "tension" driven by the large day/night asymmetry from SK

Comparison between data and predictions for NOvA v_e -appearance

NO and IO predictions are **different** because of **matter effects**

Comparison between data and predictions for NOvA v_e -appearance

20.5

Alex Radovic, Fermilab Seminar, 12th January 2018

Comparison between data and predictions (NO) for T2K v_e -appearance

	Observed	$\delta = -\pi/2$	$\delta = 0$	$\delta = +\pi/2$	$\delta = \pi$
<i>e</i> -like v mode	75	74.4	62.2	50.6	62.7
<i>e</i> -like+1 π + ν mode	15	7.0	6.1	4.9	5.9
<i>e</i> -like ⊽ mode	15	17.1	19.4	21.7	19.3
μ-like ν mode	243	272.4	272.0	272.4	272.8
μ -like $\overline{\nu}$ mode	140	139.2	139.2	139.5	139.9

Preference for $\delta = 3\pi/2$ (- $\pi/2$) and NO

 $P_{\mu\mu} \sim 0$ close oscillation minimum. T2K is compatible with $\theta_{23} = \pi/4$

NOvA is compatible with $\theta_{23} = \pi/4$

Short baseline reactor experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

Short baseline reactor experiments

Very large statistics accumulated: O(10⁶) events

Atmospheric neutrino experiments

Matter effects make $P_{e\mu}$ very different from $P_{e\mu}$

Atmospheric neutrino experiments

Atmospheric neutrinos are also sensitive to δ

Atmospheric neutrino experiments

SK prefers NO and 2^{nd} octant because of excess of v_e in e-like events

$$P_{\mu e} \simeq P_{\rm atm} + P_{\rm sol} \stackrel{\rm NO}{\pm} 2\sqrt{P_{\rm atm}} \sqrt{P_{\rm sol}} \cos\left(\frac{NO}{\delta \pm} \frac{\Delta m_{31}^2 L}{4E}\right)$$

Experiment work near oscillation maximum: $\Delta m^2_{31}L/(4E) \sim \pi/2$

Ordering	δ	<u>+cos(δ+Δm²₃₁L/(4E))</u>
normal	3π/2	+1
normal	π/2	-1
normal	0	0
normal	Π	0

$$\bar{P}_{\mu e} \simeq \bar{P}_{\rm atm} + \bar{P}_{\rm sol} \stackrel{\rm NO}{=} 2\sqrt{\bar{P}_{\rm atm}} \sqrt{\bar{P}_{\rm sol}} \cos\left(\delta \stackrel{\rm NO}{=} \frac{\Delta m_{31}^2 L}{4E}\right)$$

Experiment work near oscillation maximum: $\Delta m^{2}_{31}L/(4E) \sim \pi/2$

Ordering	δ	±cos(δ±Δm² ₃₁ L/(4E))	
normal	3π/2	-1	
normal	π/2	+1	
normal	0	0	
normal	Π	0	

Global analyses comparison

Bari Group F. Capozzi, E. Lisi, A. Marrone, A. Palazzo Prog. Part. Nucl. Phys. 102 (2018) 48

NUFIT Group

I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz JHEP 1901 (2019) 106

Valencia Group

P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle Phys. Lett. B 782, 633 (2018)

Global analyses comparison

Comparison in terms of $\boldsymbol{\delta}$

Global analyses comparison

Comparison in terms of θ_{23}

$0\nu\beta\beta$ constraints on $m_{\beta\beta}$

We convert the constraint on $T_{0\nu\beta\beta}$ from KamLAND-ZEN to $m_{\beta\beta}$

$$\chi^{2}(m_{\beta\beta}) = \min_{|\mathbf{M}|} \underbrace{\chi^{2}(T_{0\nu\beta\beta}(m_{\beta\beta}, |\mathbf{M}|))}_{\text{given by the collaboration}} + \underbrace{\chi^{2}(|\mathbf{M}|)}_{\text{our calculation}}$$

$$\chi^{2}(|\mathbf{M}|) = \frac{(\eta - \bar{\eta})^{2}}{\sigma_{\eta}^{2}}$$

$$\chi^{2}(|\mathbf{M}|) = \frac{(\eta - \bar{\eta})^{2}}{\sigma_{\eta}^{2}}$$

$$\eta = \log_{10}(|\mathbf{M}|) = \bar{\eta} + \underbrace{\alpha(g_{A} - 1)}_{\text{short-range}} + \underbrace{s\beta}_{\text{short-range}} + \underbrace{\sigma}_{\text{correlations}}$$
For ¹³⁶Xe we have α =0.458, β =0.021 σ =0.032
We assume σ_{gA} =0.15.

$$\sigma_{\eta} = \sqrt{(\alpha\sigma_{g_{A}})^{2} + \beta^{2} + \sigma^{2}} = 0.078$$
Francesco Capozzi - Max Planck Institute For Physics

We take the constraint from different cosmological observations

TABLE II: Results of the global 3ν analysis of cosmological data within the standard $\Lambda \text{CDM} + \Sigma$ and extended $\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$ models. The datasets refer to various combinations of the Planck power angular CMB temperature power spectrum (TT) plus polarization power spectra (TE, EE), reionization optical depth τ_{HFI} , lensing potential power spectrum (lensing), and BAO measurements. For each of the 12 cases we report the 2σ upper bounds on $\Sigma = m_1 + m_2 + m_3$ for NO and IO, together with the $\Delta \chi^2$ difference between the two mass orderings (with one digit after decimal point). For any Σ , the masses m_i are taken to obey the δm^2 and Δm^2 constraints coming from oscillation data. See the text for more details.

#	Model	Cosmological data set	Σ/eV (2 σ), NO	Σ/eV (2 σ), IO	$\Delta \chi^2_{ m IO-NO}$
1	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$	< 0.72	< 0.80	0.7
2	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$ + lensing	< 0.64	< 0.63	0.2
3	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$ + BAO	< 0.21	< 0.23	1.2
4	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$	< 0.44	< 0.48	0.6
5	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.45	< 0.47	0.3
6	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.18	< 0.20	1.6
7	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$	< 1.08	< 1.08	-0.1
8	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + lensing	< 0.91	< 0.93	0.0
9	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + BAO	< 0.45	< 0.46	0.2
10	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$	< 1.04	< 1.03	0.0
11	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.89	< 0.89	0.1
12	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.31	< 0.32	0.3

F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, Melchiorri and A. Palazzo, Phys. Rev. D 95 (2017) no.9, 096014

We take the constraint from different cosmological observations

TABLE II: Results of the global 3ν analysis of cosmological data within the standard $\Lambda \text{CDM} + \Sigma$ and extended $\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$ models. The datasets refer to various combinations of the Planck power angular CMB temperature power spectrum (TT) plus polarization power spectra (TE, EE), reionization optical depth τ_{HFI} , lensing potential power spectrum (lensing), and BAO measurements. For each of the 12 cases we report the 2σ upper bounds on $\Sigma = m_1 + m_2 + m_3$ for NO and IO, together with the $\Delta \chi^2$ difference between the two mass orderings (with one digit after decimal point). For any Σ , the masses m_i are taken to obey the δm^2 and Δm^2 constraints coming from oscillation data. See the text for more details.

#	Model	Cosmological data set	Σ/eV (2 σ), NO	$\Sigma/\mathrm{eV}~(2\sigma),\mathrm{IO}$	$\Delta \chi^2_{ m IO-NO}$
1	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$	< 0.72	< 0.80	0.7
2	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$ + lensing	< 0.64	< 0.63	0.2
3	$\Lambda \text{CDM} + \Sigma$	Planck TT + concervat	$iv \sim 0.21$	< 0.23	1.2
4	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EP Planck TT, TE, EP Planck	. I V G < 0.44	< 0.48	0.6
5	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + dataco	- < 0.45	< 0.47	0.3
6	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + THEI + DATASC	< 0.18	< 0.20	1.6
7	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$	< 1.08	< 1.08	-0.1
8	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck $TT + \tau_{HFI} + lensing$	< 0.91	< 0.93	0.0
9	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + BAO	< 0.45	< 0.46	0.2
10	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$	< 1.04	< 1.03	0.0
11	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.89	< 0.89	0.1
12	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.31	< 0.32	0.3

F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, Melchiorri and A. Palazzo, Phys. Rev. D 95 (2017) no.9, 096014

We take the constraint from different cosmological observations

TABLE II: Results of the global 3ν analysis of cosmological data within the standard $\Lambda \text{CDM} + \Sigma$ and extended $\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$ models. The datasets refer to various combinations of the Planck power angular CMB temperature power spectrum (TT) plus polarization power spectra (TE, EE), reionization optical depth τ_{HFI} , lensing potential power spectrum (lensing), and BAO measurements. For each of the 12 cases we report the 2σ upper bounds on $\Sigma = m_1 + m_2 + m_3$ for NO and IO, together with the $\Delta \chi^2$ difference between the two mass orderings (with one digit after decimal point). For any Σ , the masses m_i are taken to obey the δm^2 and Δm^2 constraints coming from oscillation data. See the text for more details.

#	Model	Cosmological data set	$\Sigma/\mathrm{eV}~(2\sigma),\mathrm{NO}$	Σ/eV (2 σ), IO	$\Delta \chi^2_{\rm IO-NO}$
1	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$	< 0.72	< 0.80	0.7
2	$\Lambda \text{CDM} + \Sigma$	Planck TT + anarosi	100 < 0.64	< 0.63	0.2
3	$\Lambda \text{CDM} + \Sigma$	Planck TT + THEI COST	< 0.21	< 0.23	1.2
4	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + TH datase	• < 0.44	< 0.48	0.6
5	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.45	< 0.47	0.3
6	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.18	< 0.20	1.6
7	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$	< 1.08	< 1.08	-0.1
8	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + lensing	< 0.91	< 0.93	0.0
9	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + BAO	< 0.45	< 0.46	0.2
10	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$	< 1.04	< 1.03	0.0
11	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.89	< 0.89	0.1
12	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.31	< 0.32	0.3

F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, Melchiorri and A. Palazzo, Phys. Rev. D 95 (2017) no.9, 096014

Francesco Capozzi - Max Planck Institute For Physics

Free parameters in conservative approach:

$Ω_b$, $Ω_{cm}$, τ, A_s , n_s , Σ, A_{lens}

Free parameters in aggressive approach:

$$Ω_b, Ω_{cm}, τ, A_s, n_s, Σ$$

(A_{lens} = 1)