

KM3NeT

Looking for Dark Matter with ANTARES and KM3NeT deep-sea neutrino telescopes

Miguel Ardid on behalf of the ANTARES and KM3NeT Collaborations

International Conference on Neutrinos and Dark Matter (NDM-2020) 11-14 January - Hurghada, Egypt

Relic WIMPs

captured in

celestial bodies

Indirect detection of WIMPs in a neutrino telescope

χχ self-annihilations into c,b,t quarks, τ leptons or W,Z,H bosons can produce significant high-energy neutrinos flux

Be window on the University Potential $\chi\chi \rightarrow \nu$ sources are Sun, Earth & Galactic Centre Signal less affected by

NTARA

KM3Ne¹

Signal less affected by astrophysical uncertainties than γ -ray indirect detection

Neutrino telescopes: Detection principle

interaction

Reconstruction of μ trajectory (~ v) from timing and position of PMT hits

KM3NeT

Neutrinos as dark-matter messengers

- Source confusion may be less problematic compared to other messengers, in regions like the Centre of the Milky Way
- No dedicated data sets needed

The ANTARES detector

MILOM

LHPS0

Site Map

QL3

Reconstruction Performance

- Upgoing track events (v_µCC)
- Angular resolution < 0.4° for E_v>10 TeV
- Energy resolution : factor 3
- 90% purity of neutrinos
- Large detection volume from μ range
 →ideal for neutrino astronomy
 →but large atmospheric μ bkg
- Upgoing cascade events (v_e/v_{τ} CC, NC)
- Angular resolution < 3°
- Energy resolution for $v_e CC < 10\%$
- Contained events (small detection volume)
 →almost no atmospheric bkg

See R. Gozzini's talk for more details about ANTARES

The future of Neutrino Astronomy in the Mediterranean Sea ANTARES → KM3NeT

12 Lines, 885 OM

3 Building Blocks on 2 Sites 3*115 lines, ~6210 OMs, ~ 192510 PMTs

Basic active element: Digital Optical Module 31 x 3" PMTs

18 OMs/line

KM3NeT

KM3NeT Neutrino Telescope

KM3NeT is a distributed research infrastructure with 3 main science topics:

- The origin of cosmic neutrinos (high energy)
- Measurement of fundamental neutrino properties (low energy)
- Deep Sea Observatory Oceanography, bioacoustics, bioluminescence, seismology

Currently being deployed in French and Italian sites with phased installation scheme

• ORCA: 1 small, dense block for oscillations and mass hierarchy with atmospheric ν • ARCA: 2 large, sparse blocks for astrophysics

Both suitable for dark-matter searches (being candidate particle mass fairly unconstrained)

See R. Gozzini's talk for more details about KM3NeT

Same technology

Search for Dark Matter towards the Galactic Centre

Analysis and results in ArXiv: 1912.05296

Favourable source: (1) largest dark-matter density and (2) in the Southern Hemisphere

$$\mu_{90} = \frac{\Phi}{\mathcal{A}(M_{\chi}) t} = \frac{\langle \sigma v \rangle}{2} \int_0^M \frac{dN}{dE} dE \frac{J}{4\pi} \frac{1}{M_{\chi}^2} \mathcal{A}(M_{\chi}) t$$

number of events observed = annihilation rate *
average number of particles per collision * source
geometry * acceptance * time

Data set: 11 years (3170 days lifetime), two algorithms for track (u_{μ} CC) reconstruction.

Dark-matter signal is reproduced with PPPC4[1] and different models for J-Factor[2] as a cluster of events around the source position, searched for with *unbinned likelihood method*.

$$\log \mathcal{L}(n_s) = \sum_{i=1}^{N} \log \left[n_s \mathbf{S} \left(\psi_i, N_{\text{HITS}}^i \right) + n_{bg} \mathbf{B} \left(\delta_i, N_{\text{HITS}}^i \right) \right] - n_{bg} - n_s$$

Background is described with right-ascension shuffled (*blind*) data

[1] http://www.marcocirelli.net/PPPC4DMID.html [2] Burkert [ApJ 1995], NFW [ApJ 1996], McMillan [MNRAS 2017]

Search for DM towards the GC: Unblinding results

The test statistic for 11 years of ANTARES data is compatible with background

Search for DM towards the GC: KM3NeT-ARCA sensitivities

KM3Ne¹

Similar sensitivity as ANTARES with ARCA 24 lines after 1year Factor ~10 improvement with full ARCA 230 lines

Analysis and results of 2007-2012 data in **Phys. Lett. B 759 (2016) 69** arXiv:1603.02228

- Sensitive to DM-nucleon scattering cross-section, spin-dependent and spin-independent
- Differential neutrino flux is related with the annihilation rate $\frac{d\Phi}{dE_{\nu}} = \frac{\Gamma}{4\pi d^2} \frac{dN_{\nu}}{dE_{\nu}}$
- In equilibrium between capture and annihilation $\Gamma = C/2$ with C capture rate
- Very clean: if signal \rightarrow direct interpretation (astrophysical background well known)
- Less affected by halo uncertainties (point-like extension)
- Signal from moving source: bias-free
- Searches with neutrino telescopes are sensitive at low velocities (= easier capture)

Search for Dark Matter towards the Sun: Input

- WIMPSIM package (Blennow, Edsjö, Ohlsson, 03/2008) used to generate events in the Sun in a model independent way
- Annihilations into b quarks (soft spectrum) and τ leptons, WW/ZZ bosons (hard spectrum) used as benchmarks
- Take into account v interactions in the Sun medium, regeneration of v_τ in the Sun and v oscillations

Search for Dark Matter towards the Sun: Strategy and results

Maximisation of the Likelihood function based on Signal and Background PDFs :

$$\mathcal{L}(\mathbf{n}_{s}) = e^{-(n_{s}+N_{bg})} \prod_{i=1}^{N_{tot}} \left(n_{s} S\left(\psi_{i}, N_{hit,i}, \beta_{i}\right) + N_{bg} B(\psi_{i}, N_{hit,i}, \beta_{i}) \right)$$

 N_{hit} = number of hit used for the track reconstruction β = the angular error estimate for the reconstructed track N_{tot} = tot. Number of reconstructed events n_s and N_{bg} are the number of signal and background events

- Signal PDF determined from MC simulation based on WIMPSIM spectra
- Background PDF determined from real data sample with event time scrambling

Limits on Spin Dependent cross sections

Conversion to **limits on WIMP-proton Spin Dependent cross sections** assuming equilibrium between capture and annihilation rates inside the Sun **> much better sensitivity of neutrino telescopes on SD cross-section** w.r.t. direct detection (presence of Hydrogen inside the Sun) (Worse sensitivity to SI cross-section compared to Direct Detection experiments)

Update of Sun analysis under progress with 2007-2017 data

Comparison between PPPC spectra including radiative correction effects vs WIMPSIM → large differences for b-bbar and tau+tau- annihilation channels

→ Factor ~2-3 improvement of sensitivity expected w.r.t. published limit

Search for DM towards the Sun: KM3NeT-ORCA sensitivities

Preliminary study of ORCA sensitivity for WIMP annihilation in the Sun

KM3Ne1

→ Competitive sensitivity for low mass WIMPs (20 < M_{WIMP} < 100 GeV) compared to other neutrino detectors.</p>

Sensitivity study of KM3NeT/ARCA for DM searches in the Sun under progress...

Search for Secluded DM in the Sun

Analysis and results in JCAP 05 (2016) 016, arXiv:1602.07000

Search for Secluded DM in the Sun

First constrains to these models from neutrino telescopes

Restrictive limits for Spin Dependent proton-WIMP crosssection in secluded models for sufficiently long-live but unstable mediators

from M. Blennow, J. Edsjo and T. Ohlsson, arXiv:0709.389

Search for vertical neutrino events in 2007-2012 ANTARES data \rightarrow no excess

Dark Matter density usually not at equilibrium due to low capture rates by the Earth \rightarrow Assume annihilation rate $<\sigma$ v> = 3 x 10⁻²⁶ cm³ s⁻¹ (natural scale)

Physics of the Dark Universe 16 (2017) 41

KM3Ne

- Indirect search for Dark Matter is a major goal for neutrino telescopes
- Important complementarity to direct detection experiments (Sun) and gamma searches (Galactic Centre / Halo)
- Competitive limits obtained by ANTARES on indirect searches towards the Galactic Centre
- More analyses are under progress:
 - Full ANTARES data set (end of ANTARES data taking in 2020)
 - Inclusion of shower events ($v_e/v_{\tau}CC + v NC$ events)
- 2020+ : Improved sensitivity with KM3NeT

-Sun : extension to low WIMP masses (ORCA)

-Galactic Halo : higher sensitivity expected at high WIMP masses (ARCA)

Thank you for the attention