Exploring Neutrino-Dark Matter interaction via Astrophysical Neutrinos at IceCube

Sujata Pandey Indian Institute of Technology Indore, India

Neutrinos and Dark Matter (NDM-2020) January 14, 2020

Motivation

- Neutrinos interact weakly → travel unhindered through matter.
- Give us information about the regions inaccessible by photon astronomy.
- Astrophysical neutrinos have high energy → Probe new physics at high energy.
- Neutrino travels through large cloud of dark matter before reaching the Earth.
- Dark Matter (DM) may scatter neutrinos → Flux suppression + changed Flavour Ratio
- IceCube can observe these changes → probe neutrino-dark matter interaction.

IceCube: High energy neutrino detection

Neutrinos → interact with the ice → electrically charged secondary particles → emit
Cherenkov light → The IceCube sensors collect thislight → digitized and time stamped → reveal the direction and energy of neutrinos

Flavour composition: now and in the future

Today IceCube

Best Fit : (1:1:0)

(6 year IC observation)

Near future (2022)

IceCube upgrade

PAHEN 2019 [M Bustamante Talk]

In 10 years (2030s) IceCube-Gen2

Standard (1:1:1) can be probed

4

IceCube Observations:

- · No cosmogenic event.
- Paucity of events between 500 TeV to 1 PeV (dip?).
- No contained event after 2 PeV (cut-off?)
- No double bang event (Paucity of tau neutrinos?).
- No Glashow event in 7.5 years!
- Can neutrino-DM interaction lead to features in neutrino spectrum?

Flux suppression:

Generating a dip with a t-channel process!

$$F(E, x)$$
 Flux at energy E, distance x

t-channel process

Flux suppression:

Generating a dip with a t-channel process!

$$\frac{\partial F(E,x)}{\partial x} = -n\sigma(E)F(E,x) + n\int_{E}^{\infty} dE' \frac{d\sigma(E,E')}{dE} F(E',x)$$

Neutrino regeneration

Fluxes: $E^2 F(E) \times 3$. 10^9 in units of GeV cm⁻² s⁻¹ str⁻¹

$$\sigma: \sigma_{\nu-DM} \times 3. \ 10^{21}$$
 in units of eV⁻²

$$\begin{split} &Z'\text{-mediated ν-DM interaction:}\\ &m_{\mathrm{DM}} = 0.3 \text{ eV}, \;\; gf = 7. \;\; 10^{-3}\\ &m_{Z'} = 10 \text{ MeV}, \; m_{\nu} = 0.1 \text{ eV} \end{split} \qquad \sigma = \begin{cases} \frac{g'^2 f^2}{2\pi} \frac{m_{\mathrm{DM}} E}{m_{Z'}^4} & \text{if } E < m_{Z'}^2/m_{DM}\\ \frac{g'^2 f^2}{4\pi} \frac{1}{m_{Z'}^2} & \text{if } E > m_{Z'}^2/m_{DM}. \end{cases}$$

Density of the isotropic DM background: 1.2×10^{-6} GeV cm⁻³

Features for different DM mass:

 $F(E) = 3.5 \times 10^{-8} E^{-2} \exp[-E/(1.2 \times 10^{7} \text{GeV})]$ $\text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ str}^{-1}$

S. Karmakar, S. Pandey, S. Rakshit, arXiv: 1810.04192

Shifting high energy neutrinos to lower energy

AGN core model S05

A. Karle, Talk presented at La Palma 2018

 $F(E) \propto E^{-2.3}$ with an exp cut-off at 100 PeV

Cosmogenic Neutrinos:

Neutrino-DM interactions for flux suppression: Effective + Renormalisable

Flux suppression can only happen when: $n\sigma L \sim \mathcal{O}(1)$

Keeping $L = 200 \text{ Mpc} \dots \text{Whether extragalactic DM could lead to } 1\% \text{ flux suppression } ?$

Thermal cold dark matter, due to relic density and N_{off} constraints, does not lead to flux suppression

Ultralight BEC DM are very interesting because of large n!

For effective interactions we consider 3 broad topologies:

S. Pandey, S. Karmakar and S. Rakshit, JHEP 1901(2019) 095

Topology II

10

$ c_{\mu}^{(1)}/\Lambda^{2} \lesssim 6.0 \times 10^{-3} \mathrm{GeV^{-2}}, c_{\tau}^{(1)}/\Lambda^{2} \lesssim 6.2 \times 10^{-3} \mathrm{GeV^{-2}} $ $ c_{\mu}^{(1)}/\Lambda^{2} \lesssim 6.0 \times 10^{-3} \mathrm{GeV^{-2}}, c_{\tau}^{(1)}/\Lambda^{2} \lesssim 6.2 \times 10^{-3} \mathrm{GeV^{-2}} $ $ disfavoure $ $ c_{\mu}^{(2)}/\Lambda^{2} \lesssim 1.8 \times 10^{-2} \mathrm{GeV^{-2}}, c_{\tau}^{(2)}/\Lambda^{2} \lesssim 1.3 \times 10^{-3} \mathrm{GeV^{-2}}, $ $ c_{\mu}^{(1)}/\Lambda^{2} \lesssim 1.2 \times 10^{-2} \mathrm{GeV^{-2}}, c_{\tau}^{(1)}/\Lambda^{2} \lesssim 1.3 \times 10^{-3} \mathrm{GeV^{-2}} $ $ c_{\mu}^{(1)}/\Lambda^{2} \lesssim 1.2 \times 10^{-2} \mathrm{GeV^{-2}}, c_{\tau}^{(1)}/\Lambda^{2} \lesssim 1.3 \times 10^{-3} \mathrm{GeV^{-2}} $ $ c_{\mu}^{(1)}/\Lambda^{2} \lesssim 1.2 \times 10^{-2} \mathrm{GeV^{-1}} $ $ favoured $ $ 14 $	Topology	Interaction	Constraints	Remarks
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1	$rac{c_l^{(1)}}{\Lambda^2} \; (ar{ u} i \partial \hspace{06cm} / u) (\Phi^* \Phi)$		disfavoured
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I 2	11		disfavoured
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	$rac{c_l^{(3)}}{\Lambda}ar u^c u$ $\Phi^\star\Phi$	$c_l^{(3)}/\Lambda \le 0.5 \mathrm{GeV^{-1}}$	$\mathrm{favoured}^a$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I 4		$c_l^{(4)}/\Lambda^3 \lesssim 2.0 \times 10^{-3} \mathrm{GeV^{-3}}$	disfavoured
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I 5	$rac{c_l^{(5)}}{\Lambda^3}\partial^{\mu}(ar{ u^c} u)\partial_{\mu}(\Phi^*\Phi)$	$c_l^{(5)}/\Lambda^3 \lesssim 7.5 \times 10^{-4} { m GeV^{-3}}$	disfavoured
$ \begin{aligned} & -\partial^{\nu}\Phi^{*}\partial^{\mu}\Phi)Z'_{\mu\nu} & f_{\mu}c_{\mu}^{(7)}/\Lambda^{2} \sim f_{\tau}c_{\tau}^{(7)}/\Lambda^{2} \lesssim 8.1 \times 10^{-3} \mathrm{GeV^{-2}}, \\ & + f_{i}\bar{\nu}_{i}\gamma^{\mu}P_{L}\nu_{i}Z'_{\mu} & [f_{e},f_{\mu},f_{\tau}] \lesssim [10^{-5},10^{-6},0.02] \mathrm{for}m_{Z'} \sim 10 \mathrm{MeV} \end{aligned} $ $ & \mathrm{II}2 & \frac{c_{l}^{(8)}}{\Lambda}\partial^{\mu} \Phi ^{2}\partial_{\mu}\Delta + f_{l}\bar{\nu}^{c}\nu\Delta & m_{\nu} \sim f_{l}v_{\Delta} \lesssim 0.1 \mathrm{eV}, m_{\Delta} \gtrsim 150 \mathrm{GeV} \qquad \mathrm{disfavoure} $ $ & \mathrm{III} & C_{1}(\Phi^{*}\partial_{\mu}\Phi - \Phi\partial_{\mu}\Phi^{*})Z'^{\mu} & c_{l}^{(9)}/\Lambda \lesssim 3.8 \times 10^{-3} \mathrm{GeV^{-1}} \mathrm{for}m_{Z'} \sim 10 \mathrm{MeV} \qquad \mathrm{favoured} $	I 6	11		disfavoured
III $C_1(\Phi^*\partial_\mu\Phi - \Phi\partial_\mu\Phi^*)Z'^\mu$ $c_l^{(9)}/\Lambda \lesssim 3.8 \times 10^{-3} \mathrm{GeV}^{-1} \mathrm{for} m_{Z'} \sim 10 \mathrm{MeV}$ favoured	II 1	$-\partial^{ u}\Phi^{st}\partial^{\mu}\Phi)Z'_{\mu u}$	$f_{\mu}c_{\mu}^{(7)}/\Lambda^2 \sim f_{\tau}c_{\tau}^{(7)}/\Lambda^2 \lesssim 8.1 \times 10^{-3} \mathrm{GeV^{-2}},$	disfavoured
- (0)	II 2	$rac{c_l^{(8)}}{\Lambda}\partial^{\mu} \Phi ^2\partial_{\mu}\Delta+f_lar{ u^c} u\Delta$	$m_{\nu} \sim f_l v_{\Delta} \lesssim 0.1 \mathrm{eV}, \ m_{\Delta} \gtrsim 150 \mathrm{GeV}$	disfavoured
b Favoured if $0.08 \mathrm{eV} \lesssim m_{\mathrm{DM}} \lesssim 0.5 \mathrm{eV}$	III	$C_1(\Phi^*\partial_\mu\Phi - \Phi\partial_\mu\Phi^*)Z'^\mu + \frac{c_L^{(9)}}{\Lambda}(\bar{\nu}^c\sigma_{\mu\nu}P_L\nu)Z'^{\mu\nu}$	^a Disfavoured if realise	, ,

or $m_{Z'} \sim 10 \,\mathrm{MeV}$ and $E_{\nu} \sim 1 \,\mathrm{PeV}$.

Renormalisable interaction:

Mediator	Interaction	Constraints	Remarks
Fermion	$(C_L \bar{L} F_R + C_R \bar{l}_R F_L) \Phi + h.c.$	$m_F \gtrsim 100 { m GeV}, \ m_{ m DM} \gtrsim 10^{-21} { m eV}, \ C_L C_R \lesssim \{2.5, 0.5\} \times 10^{-5} { m for} e { m and} \mu$	disfavoured
Scalar	$f_l \bar{L}^c L \Delta + g_\Delta \Phi^* \Phi \Delta ^2$	$m_ u \sim f_l v_\Delta \lesssim 0.1 { m eV}, \ g_\Delta \sim v_\Delta^2/m_{ m DM}^2$	disfavoured
Vector	$f_l'\bar{L}\gamma^{\mu}P_LLZ_{\mu}' + ig'(\Phi^*\partial^{\mu}\Phi) -\Phi\partial^{\mu}\Phi^*)Z_{\mu}'$	$[f_e, f_\mu, f_\tau] \lesssim [10^{-5}, 10^{-6}, 0.02] \text{ for } m_{Z'} \sim 10 \text{MeV}$	favoured only for ν_{τ}

Flavour Ratio and Flavour Conversion

Flavour ratio (FR) is the ratio of electron: muon: tauon neutrinos in the flux.

$$(f_{e,S},f_{\mu,S},f_{\tau,S}) \equiv (N_{e,S},N_{\mu,S},N_{\tau,S})/N_{\mathrm{tot}}$$
 FR at Earth $(\alpha=e,\mu,\tau)$: FR at source $f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta,S}$ Probability changes due to new interactions

Adiabacity parameter

$$\gamma_R = \frac{\Delta m^2 \sin^2 2\theta}{2E \cos 2\theta |d \ln n_\phi / dx|_R}$$

$$P_{\alpha \to \beta} = |U_{\alpha i}^{S}|^{2} |U_{\beta i}^{D}|^{2} - P_{ij}^{c} (|U_{\alpha i}^{S}|^{2} - |U_{\alpha j}^{S}|^{2}) (|U_{\beta i}^{D}|^{2} - |U_{\beta j}^{D}|^{2})$$

Probability of jumping from one mass state to another

Neutrino-dark matter interaction

In the presence of Dark Matter interacting with only tau neutrino the effective Hamiltonian is given by:

$$H_{\text{eff}} = \frac{1}{2E(1+z)} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{12}^2 & 0 \\ 0 & 0 & \Delta m_{23}^2 \end{pmatrix} U^\dagger + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{\tau\tau}(r)(1+z)^3 \end{pmatrix}$$

$$\begin{array}{c} V_{\tau\tau} = 4g \int h_\phi / m_Z \\ \text{Density at source } \\ \text{[arXiv:1908.04790]} \\ \text{Halo} \\ \text{Halo} \\ \end{array}$$

For antineutrinos: $U \longrightarrow U^*$, $V \longrightarrow -V$.

Local DM density is 0.4 GeV/cc.

AGN is considered as the neutrino source.

DM density near the center depends on DM mass and the mass of SMBH.

Flavour Ratio at Earth:

$$f_{\beta,{\rm S}}$$
 = (1:2:0)

$$G_F' = 2.5 \times 10^{-26} \ {\rm eV^{-2}}, \ m_{\rm DM} = 8 \times 10^{-15} \ {\rm eV},$$

$$M_{\rm BH} = 10^5 M_{\odot} \ {\rm and} \ \rho = 3.2 \times 10^9 \ \exp(-\frac{x}{0.0001 \ {\rm pc}}) \ {\rm GeV \ cm^{-3}}$$
 S. Pandey, S. Rakshit

To be communicated soon.

Conclusion

- Neutrino-DM interaction can lead to flux suppression which can lead to various features at IceCube. With greater statistics these can be probed.
- Neutrino-dark matter interaction can lead to flavour changes which can be probed at IceCube.
- Even the interactions with lower cross-section, that does not lead to flux suppression of astrophysical neutrinos can be probed via flavour changes.
- Such interactions can explain various features at IceCube.

Backup slides: Thermal DM

Topology III

