
prmon: Process Monitor

Serhan Mete (Argonne) and Graeme A Stewart (CERN)

Grid Deployment Board Meeting
September 9, 2020

What is Process Monitor (prmon)?

● “... a small stand alone program that can monitor the resource consumption of
a process and its children.”
○ An open source HSF project, completely application agnostic and self-contained

■ The only external library dependency is nlohmann/json (and only for the build)

○ Tracks (process-level) CPU/GPU, memory, disk I/O, and (device-level) network I/O usage
■ Metrics are primarily collected from ProcFS (except for GPU which comes from nvidia-smi)

● Adding support for additional hardware is in the future plans

○ It produces two main outputs:
■ Time-series text file that contains the measurements at each capture
■ JSON file that contains averages and maxima along with some hardware information

○ It includes python-based software to visualize the time-series data

2

https://github.com/HSF/prmon

https://github.com/nlohmann/json
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/HSF/prmon

Building/Distributing/Using prmon...
● prmon has been used in ATLAS distributed computing for many years

○ Predecessor was named MemoryMonitor, which was the starting point for prmon

● There are two main build/deployment options:
○ Integrating prmon as an external software and building it from scratch

■ Primarily requires C++11, Cmake 3.3+, and nlohmann/json
■ For GPU support, needs nvidia-smi installed

○ Using statically built prmon (published for each release, approx. 1 MB)
○ In either case, the binaries can be (are) distributed via CVMFS
○ More information can be found at https://github.com/HSF/prmon#build-and-deployment

● There are two main ways to execute:
○ Attach to an existing process w/ PID : prmon --pid PID
○ Start the program with prmon : prmon [prmon options] -- program [program options]
○ More information can be found at https://github.com/HSF/prmon#running

3Latest Release: v2.1.0 on Sep 8

https://github.com/HSF/prmon#build-and-deployment
https://github.com/HSF/prmon#running
https://github.com/HSF/prmon/releases/tag/v2.1.0

● The full set of metrics are provided in the back-up
● Currently all monitors are enabled by default

○ Some information is hardware dependent, e.g. GPU monitoring
4

$ prmon --help

prmon is a process monitor program that records runtime data from a process
and its children, writing time stamped values for resource consumption into
a logfile and a JSON summary format when the process exits.

Options:
[--pid, -p PID] Monitored process ID
[--filename, -f FILE] Filename for detailed stats (default prmon.txt)
[--json-summary, -j FILE] Filename for JSON summary (default prmon.json)
[--interval, -i TIME] Seconds between samples (default 30)
[--suppress-hw-info, -s] Disable hardware information (default false)
[--units, -u] Add units information to JSON file (default false)
[--netdev, -n dev] Network device to monitor (can be given
 multiple times; default ALL devices)
[--] prog [arg] ... Instead of monitoring a PID prmon will
 execute the given program + args and
 monitor this (must come after other
 arguments)

One of --pid or a child program must be given (but not both)

Monitors available:
 - countmon : Monitor number of processes and threads
 - cpumon : Monitor cpu time used
 - iomon : Monitor input and output activity
 - memmon : Monitor memory usage
 - netmon : Monitor network activity (device level)
 - nvidiamon : Monitor NVIDIA GPU activity
 - wallmon : Monitor wallclock time

Available options, monitors, and output formats...

Time metric-1 metric-2 ... metric-N
1599050513
1599050543
1599050573
...

{
 “Avg” : {
 “metric-1” : ...,
 },
 “HW” : {
 “cpu” : { ... },
 “mem” : { ... }
 },
 “Max” : {
 “metric-1” : ...,
 }
}

TXT

JSON

5Time-series text file Summary JSON file

Taking a quick look at example outputs...

6

Visualizing the results...
● prmon_plot.py can be used to visualize the time-series results, e.g.:

○ prmon_plot.py --input prmon.txt --xvar wtime --yvar vmem,pss,rss,swap --yunit GB

○ prmon_plot.py --input prmon.txt --xvar wtime --yvar utime,stime --yunit SEC --diff --stacked

○
○
○
○
○
○
○
○
○
○ More information can be found at https://github.com/HSF/prmon#visualisation

https://github.com/HSF/prmon#visualisation

7

ATLAS MC Production Job

Executing time: 6h30min

Sampling time: 60sec

Output sizes:
● 57 KB for the text file
● 1 KB for the JSON file

BigPanDA Plots (per job):
● CPU (GPU if it exists)
● Memory
● Disk I/O
● Semi-interactive
● Published in BigPanda

Publishing prmon results in the production system...

What is prmon used for exactly?

● Summary JSON file allows to:
○ Understand the application’s overall resource usage metrics via averages and maxima

■ E.g. “What is the maximum RSS/PSS usage of my application?”
○ Have a summary of the hardware information for the particular node that runs the application

■ “Is my application running on a specific processor?”

● Detailed Text file allows to:
○ Have an in-depth time-series understanding of the application’s resource usage

■ E.g. “Does the memory usage increase significantly over time (i.e. memory leak)?”
○ Cross-correlate possible application problems (errors/warnings) with resource usage

■ E.g. “Did my application performed poorly due to memory swapping? When did it start?”

● More importantly do all these in a general/generic/application-agnostic way

8

Experiences from the ATLAS distributed computing

● prmon is one of the essential tools for PanDA job brokering:
○ For each task, 10 scout jobs are released and their resource usages are analyzed
○ Remaining tasks are released if and only if scout jobs’ resource usages fit the allowed envelope
○ prmon is the main tool for the memory measurements in this context

● prmon summary numbers are recorded in PanDA DB/Chicago analytics cluster
○ Also used for general job studies afterwards

● Pilot also runs an instance of prmon on the worker node to collect job data:
○ Sampling is configured to 60 seconds, i.e. prmon --interval 60 [...]
○ The outputs are stored in the job log tarball and stored on the SCRATCHDISK

■ Typically cleaned-up after 2-4 weeks
■ Overhead negligible compared to everything else

● Plots (a la slide 6) are produced by the BigPanda monitoring and published
○ Accessible to the users via the BigPanDA web-interface
○ The infrastructure is being extended to also handle GPU related metrics

9

Using prmon for detailed workflow analysis

● Riccardo Maganza started to work on analyzing large-scale prmon data
○ Fellow in CERN IT-SC-RD (w/ a background in data analytics) working with Markus Schulz

● The overarching goal of the work is to understand the efficiency of the
workflows and find potential improvements

● The planned steps in the project are to:
○ Store the time-series results in a very compact format,
○ Classify efficiency differences of workloads at different sites and under changing conditions,
○ Detect anomalies in the time-series results linked to job failures etc.

● The effort began by focusing on ATLAS workflows but the long term goal is to
extend this to the other experiments

10

Conclusions

● prmon is a light-weight, self-contained resource monitoring program
○ Developed primarily for the HEP workflows but completely application agnostic

● It has been used in the ATLAS distributed computing for more than a year now:
○ Used in the context of job brokering as well as general resource monitoring
○ Other experiments (CMS and LHCb) are also planning to adopt it

● We, as the current developers, would be more than happy to get feedback:
○ Bug reports, feature requests etc. are most welcome!
○ See our Contribution Guide

● Acknowledgements:
○ Last but not least, thanks to Johannes Elmsheuser, Andrea Sciabà and many others for their

contributions, inputs, feedback and more...

11

https://github.com/HSF/prmon
https://github.com/HSF/prmon/blob/master/doc/CONTRIBUTING.md

Back-up

12

Full set of prmon metrics...

13

procs/threads CPU Memory Disk I/O Network I/O Nvidia GPU

nprocs utime vmem rchar rx_bytes ngpus

nthreads stime rss read_bytes rx_packets gpusmpct

wtime pss wchar tx_bytes gpumempct

swap write_bytes tx_packets gpufbmem

● All metrics are process-level except for the Network I/O, which are device-level
○ For more information please refer to https://man7.org/linux/man-pages//man5/procfs.5.html

● GPU metrics are collected via nvidia-smi
○ More information regarding the metrics can be found at https://github.com/HSF/prmon/pull/125

https://man7.org/linux/man-pages//man5/procfs.5.html
https://github.com/HSF/prmon/pull/125

