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Computing and Data Handling: 
Summary @ ICHEP 2020

James Catmore, University of Oslo

Computing Coordinator for the ATLAS Collaboration
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CERN
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50 CERN

50 GB/second 
50 million files/week 

> 6 billion HS06-hours/month 

> 1 exabyte on disk and tape 



Compute: mostly Intel or AMD CPUs with x86 instruction sets. Usually multi-core. 

Some GPUs now available at the main Grid sites and (particularly) at HPC centres.

Storage: mixture of tape (for long term data archival) and disk (for fast and regular data access).

Very little solid state technology in use.

Network: CERN is connected to each of the major grid sites around the world on a dedicated, 
private, high-bandwidth network called the LHC Optical Private Network (LHCOPN). Links can 
sustain between 10-100 gigabits/second, leading to average data movement of 50 GB/second

Software: complex patchwork. Most experiments have dedicated frameworks written in C++ and 
configured in Python. Rely on many external packages from within and outside the field. Many 

millions of lines of code. Generally written for x86, originally single threaded but increasingly multi-
threaded. 


Analysis software as varied as the user community, but strong movement towards the Python 
ecosystem and particularly notebooks.
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Source

Moore’s Law is holding… 
But only for applications using CONCURRENCY

https://github.com/karlrupp/microprocessor-trend-data
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SourceTape significantly cheaper  
than disk… 

but near-monopoly 

https://hblok.net/blog/storage/
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https://businesstechnologypartner.files.wordpress.com/2012/09/video-traffic.jpg
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Source

https://businesstechnologypartner.files.wordpress.com/2012/09/video-traffic.jpg


Topic

Applications

Event 
generation

Detector 
simulation

Reconstruction

Analysis
DAQ/trigger

Frameworks

Experiment

ROOT

Statistics/ML

Grid fabric

Data 
management

Workload 
management

Monitoring

SW 
Deployment

Data formats

Development

Compilers

Debuggers/
profilers

Repository/CI

Experiment

ROOT HepMC
Non-HEP
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Community White Paper

https://link.springer.com/article/10.1007/s41781-018-0018-8
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20 x Run 2 
10 x Run 3 
<μ> ≤ 200
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CPU Estimates for Run3 and High Luminosity-Large Hadron Collider (HL-LHC)

10

Sharad Agarwal for CMS Collaboration - ICHEP 2020

The graph estimates the constant 

increase in CMS CPU resources 

for Run3 and increases by an order 

of magnitude for the HL-LHC.
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Challenges for HL-LHC 14

COMPUTATION STORAGE

DATA DELIVERY

ANALYSIS PORTABILITY FACILITIES



Computing and Data Handling session @ ICHEP 2020
• 33 talks

• Data acquisition: 1

• Event generation: 3

• Simulation: 4

• Reconstruction: 4

• Analysis techniques: 3

• Analysis tools: 4

• Data and workload management: 3

• General experiment summaries: 7

• Software management and distribution: 1

• Monitoring and anomaly detection: 1

• Quantum (inspired) computing: 2
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Excellent talks throughout the sessions! 

Covered the full range of activities and issues 
related to computing and software in the 2020s 

I highlight the talks that most directly address the 
challenges described in the previous slide. 

Apologies to speakers whose material is not 
included. 

Disclaimer: these are my own interpretations and 
any errors are mine alone
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Compute challenge 
Portability challenge



Addressing the Compute Challenge 17
Can either optimise existing code… or make use of concurrency…
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Role of machine learning
• Machine learning is not new in our field - simple neural networks were in use in LEP days

• Boosted Decision Trees have been instrumental in many measurements and discoveries, including single top 
quark production and some Higgs channels

• How many physics results presented at this conference do not use some form of multi-variate technique?

• In recent years there have been huge advances in deep learning, powered by very large and artfully constructed 
neural networks 

• Easy availability of powerful software for building complex neural networks

• Training deep neural networks is particularly well suited to GPUs → possible solution to the portability problem

• Deep learning is already making significant contributions to analysis and simulation: can be both better and faster

• Less obvious for reconstruction

18
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G. Stewart, Wednesday 

https://indico.cern.ch/event/868940/contributions/3814716/attachments/2081740/3496711/Detector_Simulation_Upgrades_for_HL-LHC_-_ICHEP2020.pdf
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G. Stewart, Wednesday 

https://indico.cern.ch/event/868940/contributions/3814716/attachments/2081740/3496711/Detector_Simulation_Upgrades_for_HL-LHC_-_ICHEP2020.pdf
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Fast simulation overview Fast Simulation at LHCb
Adam Morris (Bonn) ICHEP 2020

Growing menu of fast simulation options

Step sped-up
Method Generation Decay Propagation Digitisation Trigger Reconstruction
ReDecay X X X
PGun X X X
SplitSim X X
RICHless X
TrackerOnly X
Lamarr X X X X
FastCALO* X

* [Separate talk by M. Rama]

4

A. Morris, Wednesday M. Rama, Wednesday

https://indico.cern.ch/event/868940/contributions/3814341/attachments/2081387/3496052/Fast_sim_at_LHCb.pdf
https://indico.cern.ch/event/868940/contributions/3814342/attachments/2081922/3497026/rama_ichep20.pdf
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J. Cruz-Martinez, Thursday
Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.

Monte Carlo integration of a
n-dimensional gaussian function

I =

Z
dx1 . . . dxn e

x2

1
+···+x2

n

GPU computation can increase the performance of the integrator by more
than an order of magnitude.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 6 / 16

VegasFlow What is VegasFlow?

A new tool: VegasFlow

Framework for evaluation of high dimensional integrals based on MC algorithms.

Version 1.0 includes:

X Plain Monte Carlo: to be used
as a template for writing more
complicated algorithms.

X Vegas: importance sampling
algorithm by G. Peter Lepage.

Source code available at:
github.com/N3PDF/VegasFlow

VegasFlow

?????

?????

matrix element

PDFFlow

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 10 / 16

VegasFlow Example of results

VegasFlow Vs Madgraph LO

For Leading Order calculations the advantages are immediately visible

Plain Madgraph Vs C++-like
implementation

- We have ported an old fortran
code, no GPU-specific
optimization.

- Phase Space, spinors, cuts... all
done ‘the old way”

i.e., there’s room for improvement by developing GPU-specific code!
What about NLO?

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 13 / 16

https://indico.cern.ch/event/868940/contributions/3814440/attachments/2081000/3497892/juanCM.pdf
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https://indico.cern.ch/event/868940/contributions/3814440/attachments/2081000/3497892/juanCM.pdf
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Physical example - VBF Higgs production at NLO

Born diagram for qQ ! qQH

hep-ph/arXiv:1807.07908

X Best speed-up at
LO: 63x(C),
43x(P)

X Best speed-up at
NLO: 7.9x(C),
2.9x(P)

(C) consumer-grade
(P) professional-grade hardware

CPU implementation: LHAPDF + Fortran code
GPU implementation: PDFFlow + VegasFlow

Marco Rossi
(Openlab-CERN University of Milan) PDFFlow ICHEP 2020 17/19

M. Rossi, Friday

Physical example - Single top production at LO

Combine PDFFlow and VegasFlow (MC integrator,
10.1016/j.cpc.2020.107376)

Speed comparison CPU-GPU for PDFFlow + VegasFlow

Born diagram for qq̄ ! b̄t

X Speed-up range:
[7.0, 9.9]x

Single top dry run

Marco Rossi
(Openlab-CERN University of Milan) PDFFlow ICHEP 2020 16/19

PDFFlow: PDF interpolation

https://indico.cern.ch/event/868940/contributions/3814440/attachments/2081000/3497892/juanCM.pdf
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C. Zampolli, Thursday
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Ɣ 6\QFKURQRXV��GXULQJ�GDWD�WDNLQJ>�@�
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ż �����73&�VWDQGDORQH�WUDFNLQJ�UXQV�RQ�*38V

ż ,76�DQG�75'�WUDFNLQJ�RQ�IHZHU�HYHQWV�ĺ�FDOLEUDWLRQ

Ɣ $V\QFKURQRXV��GXULQJ�QR�EHDP�DQG�SS�FROOLVLRQV�
ż )XOO�UHFRQVWUXFWLRQ�LQFOXGLQJ�DOO�GHWHFWRUV

ż *38V�XVHG�DOVR�E\�,76�DQG�75'�UHFRQVWUXFWLRQ
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>�@&��=DPSROOL��ê$/,&(�GDWD�SURFHVVLQJ�IRU�5XQ���DQG�5XQ���DW�WKH�/+&ë >�@0��/HWWULFK��ê)DVW�(QWURS\�&RGLQJ�IRU�$/,&(�5XQ��ë

M. Concas, Thursday

Goal of synchronous reconstruction is to reach factor 35 of compression.

Most	relevant	detector	is	TPC:	from	3.4	TB/s	to	70	GB/s

TPC	data	compression	will	consist	of:
• Zero	suppression
• Clusterization
• Optimized	data	format
• Entropy	reduction
• TPC	tracking,	to	remove	clusters	not	

associated	to	tracks
• Remaining	clusters	entropy-compressed	

with	ANS	encoding

Synchronous processing

30	July	2020 C.	ZAMPOLLI	FOR	ALICE 13

Plan	to	exploit	GPUs	computing	
power	also	during	asynchronous	

reconstruction

USE OF GPUs MANDATORY
> 40x faster than CPU but only 4x more expensive

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression

TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Planned for the future

TPC Cluster 

removalIdentify hits 

below 10MeV/c

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Baseline: synchronous 

reconstruction on GPU

Future additional 

processing on GPU: 

asynchronous, etc.

See	M.	Concas
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FRUHV�ZLWK�D�VLQJOH�JUDSKLFV�FDUG

Ɣ 1XPEHU�RI�UHTXLUHG�*38V�LV�aFRQVWDQW

Ɣ 7KH�SURFHVVLQJ�WLPH�VFDOHV�OLQHDUO\�
ZLWK�WKH�GDWD�VL]H��LQ�FRQWLQXRXV�
UHDGRXW�UHJLPH��DGMXVWPHQWV�RQ�WKH�
WLPHIUDPH�OHQJWK�ZLOO�QRW�DIIHFW�
SHUIRUPDQFH
ż ,Q�WKH�PRVW�UHOHYDQW�FDVH��WKH�73&�

UHFRQVWUXFWLRQ�FKDLQ��WKH�VSHHGXS�

UHDFKHV�D�IDFWRU�a���

0��&RQFDV�IRU�WKH�$/,&(�&ROODERUDWLRQ ,&+(3�����

J§Ç�ƴƞöēŞŊŭļ͆�ƞġƦƼŢƴƦ�öŭĚ�ƛġƞĻŸƞūöŭēġ

��

$YHUDJH�VSHHGXS�QRUPDOLVHG�WR�RQH�FRUH�IRU�GLIIHUHQW�*38�FDUGV�DQG�D�FRPSDULVRQ�ZLWK�
IRUPHU�RIćLQH�WUDFNLQJ�YV�+/7�WUDFNLQJ�

Ɣ (IĆFLHQW�XVDJH�RI�WKHVH�DFFHOHUDWRUV�
DOORZV�XV�WR�WUDGH�IURP����WR�����&38�
FRUHV�ZLWK�D�VLQJOH�JUDSKLFV�FDUG
ż 7KH�VSHHGXS�GHSHQGV�RQ�WKH�DOJRULWKP��

7KLV�DYHUDJH�FRQWDLQV�VRPH�SDUWV�QRW�

RSWLPL]HG�IRU�&38��ZKHUH�VSHHGXS�LV�

���������

ż )RU�73&�WUDFNLQJ�DQG�ĆW�VSHHGXS�LV�
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• 40-150 CPUs replaced by one GPU

• TPC tracking speeded up by factor of 50-100

https://indico.cern.ch/event/868940/contributions/3814327/attachments/2082270/3498065/CZampolli_ICHEP_20200730_v6.pdf
https://indico.cern.ch/event/868940/contributions/3814330/attachments/2082180/3497463/2020-jul-24-conference_presentation-gpu-based_online-offline_reconstruction_in_alice_for_lhc_run_3_v6.pdf
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N. Skidmore, Friday
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https://indico.cern.ch/event/868940/contributions/3814362/attachments/2082742/3499080/ICHEPSkidmore.pdf
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A. Salzburger, Friday
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The Challenge
The TrackML detector - Innermost Pixel System

4 barrel-layer central pixel system 
7 EC discs (both sides) 
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The Challenge
A TrackML event - The Dataset
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cells/details

truth
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The Challenge
The TrackML detector - Long Strip System
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6 EC discs (both sides) 

Optimistic material budget Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), 
Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University), David Rousseau, Yetkin Yilmaz (LAL-Orsay), 
Paolo Calafiura, Steven Farrell, Heather Gray (LBNL), Vladimir Vava Gligorov (LPNHE-Paris), Laurent Basara, 
Cécile Germain, Victor Estrade (LRI-Orsay), Edward Moyse (University of Massachussets), Mikhail Hushchyn, 
Andrey Ustyuzhanin (Yandex, HSE)

Organisation team

Phase 1

focus on accuracy accuracy & speed

Organisation
Phase 2

Apr 13, 2018 Aug 14, 2018 Sep 07, 2018 Nov 12, 2018

Particle Tracking Machine Learning Challenge [ Phase 1 ][ Phase 2 ]Summary publications
2

Phase 2 - Final Score Map

34

03/14/19
TrackML Challenge, ACAT19, J.-R. Vlimant

28

Time – Accuracy Decomposition

Incidentally, best solutions are also best accuracy and best timing.
Software will be submitted and analyzed in the coming weeks.

Correlation accuracy / speed
Fastest solution are  
in general also the most 
accurate one!

Phase 1 Aftermath - Tracking Efficiency
High score means High tracking efficiency

27

03/14/19
TrackML Challenge, ACAT19, J.-R. Vlimant

20

Physics Performance

Highest score correlates well with the tracking efficiency

Phase 1          DL Prize3.

25

28 Authors Suppressed Due to Excessive Length

Fig. 20 Schematic representation of the steps of algorithm selected by the jury for its use of deep
learning and recurrent network. Left : seeding is performed using DBSCAN. Middle : a recurrent
model is trained and used to predict the positions of the next hits. Right : kNN-tree algorithm is
used to find the closest matching hits.

Fig. 21 Diagram of the recurrent neural network architecture used by the jury deep learning prize
algorithm. A set of 5 hit quadruplets followed by 5 blank coordinates are presented in input to the
model which produces in total 10 hit position quadruplets, that last five of which are used to look for
matching hits in the detector. The model is a dual stacked LSTM with a dense model transforming
the hidden representation into the space of hit position quadruplets.

left plot of figure 13), regardless of the poor score overall (rank hundredth). The
solution (https://github.com/diogo�/trackml-100) uses a pattern matching algorithm
also found in actual LHC trigger implementations that can be found in [25] and is
based on the assumption that the training dataset contains all possible track pattern
that can be observed in the detector during collisions. The algorithm written in
Python has the following two main steps.

1. Route data-banks building: from the observation that tracks are seldom sharing
the ordered sequence of modules that are crossed, a set of routes are constructed

KNN-treeRecurrent NN
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Fig. 20 Schematic representation of the steps of algorithm selected by the jury for its use of deep
learning and recurrent network. Left : seeding is performed using DBSCAN. Middle : a recurrent
model is trained and used to predict the positions of the next hits. Right : kNN-tree algorithm is
used to find the closest matching hits.

Fig. 21 Diagram of the recurrent neural network architecture used by the jury deep learning prize
algorithm. A set of 5 hit quadruplets followed by 5 blank coordinates are presented in input to the
model which produces in total 10 hit position quadruplets, that last five of which are used to look for
matching hits in the detector. The model is a dual stacked LSTM with a dense model transforming
the hidden representation into the space of hit position quadruplets.

left plot of figure 13), regardless of the poor score overall (rank hundredth). The
solution (https://github.com/diogo�/trackml-100) uses a pattern matching algorithm
also found in actual LHC trigger implementations that can be found in [25] and is
based on the assumption that the training dataset contains all possible track pattern
that can be observed in the detector during collisions. The algorithm written in
Python has the following two main steps.

1. Route data-banks building: from the observation that tracks are seldom sharing
the ordered sequence of modules that are crossed, a set of routes are constructed
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5.1.6 Jury Deep Learning Prize : finnies

Nicole and Liam Finnie are software engineers in Germany.

The jury has selected this solution (https://github.com/jliamfinnie/kaggle-trackml)
for the use of recurrent artificial neural network (RNN), using long short term mem-
ory cells [21] (LSTM) also used in [19]. The DBSCAN algorithm reference in 5.1.5
is used to cluster hits in inner-most layers of the detector in order to produce tracklets
seeds. The recurrent network is used in place of a propagator to find the potential
position of hits on subsequent layers of the detector.

The team that ranked twelth in the challlenge also came up with the following
algorithm implemented in python using keras [14] and Tensorflow [2]. It proceeds
as follows and as depicted in fig 20

1. Seeding: hits from all layers are considered in polar coordinates and clustered
using the DBSCAN algorithm [18]. Each track candidate is truncated to the first
5 hits to produce a tracklet seed. The purity of the collection of seeds is improved
using outliers rejection.

2. Path Prediction: from the observation that tracks are mostly straight lines in the
coordinate systems (�, r) and (r, z), the (�, r, z, z/r) is chosen for track following.
A recurrent unit is constructed (see figure 21) with one hit position in input, and
one hit position in output. It is ran along the 5 hits of the seed, and unrolled
for 5 more iterations using zero-ed input to predict the position of the next 5
hits. Multiple architectures for the recurrent model are implemented and trained
separately. They are ensembled with averaging to provide the final prediction of
the path of the charged particle in the detector.

3. Hit association: the k-D tree [6] is built using all hits of the events in the
quadruplet space to e�ciently find hits that are the closest to the path prediction,
based on the Manhattan distance.

Multiple architecture of the recurrent model are investigated, the training of the
models is quite prohibitive to allow for a full optimization. Computationally more
economical recurrent cells such as gated recurrent units (GRU) could be used to
make this training faster without a-priory loss of predictability. This approach uses
RNNs for track following and used the starting kit (see section 2.7) to quickly get
a set of good seeds. The algorithmic performance depends strongly on the seeding
mechanism and could therefore be largely improved. By design, this algorithm can
only provide track candidates with ten hits. Variations of the model architecture and
training could allow for shorter and longer tracks to be found.

5.1.7 Organizer’s Pick : diogo

Diogo R. Ferreira is a professor/researcher at the University of Lisbon, focusing on

data science and nuclear fusion.

As discussed in section 4, one of the solutions drew the attention of the organizer as
it performed quite uniquely well for track with large impact parameters (see bottom

5 sets of hit quadruplets

10 output sets of hit quadruplets
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DBScan

FittingInference & Assembling
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Fig. 20 Schematic representation of the steps of algorithm selected by the jury for its use of deep
learning and recurrent network. Left : seeding is performed using DBSCAN. Middle : a recurrent
model is trained and used to predict the positions of the next hits. Right : kNN-tree algorithm is
used to find the closest matching hits.

Fig. 21 Diagram of the recurrent neural network architecture used by the jury deep learning prize
algorithm. A set of 5 hit quadruplets followed by 5 blank coordinates are presented in input to the
model which produces in total 10 hit position quadruplets, that last five of which are used to look for
matching hits in the detector. The model is a dual stacked LSTM with a dense model transforming
the hidden representation into the space of hit position quadruplets.

left plot of figure 13), regardless of the poor score overall (rank hundredth). The
solution (https://github.com/diogo�/trackml-100) uses a pattern matching algorithm
also found in actual LHC trigger implementations that can be found in [25] and is
based on the assumption that the training dataset contains all possible track pattern
that can be observed in the detector during collisions. The algorithm written in
Python has the following two main steps.

1. Route data-banks building: from the observation that tracks are seldom sharing
the ordered sequence of modules that are crossed, a set of routes are constructed
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https://indico.cern.ch/event/868940/contributions/3814673/attachments/2082738/3498457/2020-07-31-ICHEP-TrackML-Summary-ASalzburger.pdf
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Resource provisioning and workload scheduling of CMS Off. Computing July 31st, 2020

Motivation for the use of HPC resources 

CMS aims towards increasing the usage of HPC resources in the mid to long term future (Run3 & HL-LHC):

● Growing funding in HPC infrastructures looking onwards to deploying Exascale machines
● Countries/Funding agencies pushing HEP communities to make use of these resources
● Interest in HEP experiments to access best technologies available, usually employed at HPC sites
● HPC contribution in the future regarded as integral part of WLCG strategy towards HL-LHC

14

I. Bird
Scientific Computing Forum
October 2019

HPC!

Resource provisioning and workload scheduling of CMS Off. Computing July 31st, 2020

Dynamic resources integration

16

Recent progress in the integration of new resources into the CMS Global Pool and for CMS use:
• HPC: via GlideinWMS pilot submission (CINECA) or integrated to HEPCloud (NERSC, etc)
• Cloud: as extension of Grid sites (CERN_Azure and PIC_AWS)
• Opportunistic use of clusters: CERN_BEER and extended Research or University campus (e.g. KIT_T3 and at 

Purdue)
• CMS@Home jobs in a separated Volunteer pool

Non-standard resources require enhanced workload-to-resource matchmaking: working on an expanded 
description of jobs and resources for flexible and efficient scheduling (e.g. select no input data tasks, suitable 
job processing time in KNL nodes, etc.)

GlideinWMS pilots HEPCloud & BOINC

A. Yzquierdo, Friday

https://indico.cern.ch/event/868940/contributions/3814459/attachments/2083336/3499795/20200731_CMS_SI_ICHEP20.pdf
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Analysis challenge 
Storage and Data Delivery challenge



Analysis models
• Evolution of analysis models towards HL-

LHC is to smaller and flatter data formats

• e.g. nanoAOD for CMS, 
DAOD_PHYSLITE for ATLAS

• Increasing interest in high-speed delivery of 
columnar data to physicists in real time via 
Spark or similar technologies, with analysis in 
workbooks

• Challenge: integrating this with our 
distributed computing infrastructure

• Concept of Analysis Facilities within existing 
grid sites is gaining interest

30

•

•

•

•
•

•

•

M. Svatoš, Friday

https://indico.cern.ch/event/868940/contributions/3814320/attachments/2074434/3483142/ATL-SOFT-SLIDE-2020-234.pdf
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ROOT • Axel Naumann, 2020-07-28, ICHEP 2020, Prague

Why to bet on ROOT

• Targeted for HEP: simplicity, efficiency, support  

• Allows to predict changes, adapt and benefit: solutions and R&D tailored to 
our very own problems 

• Interface with and learn from other tools 

• Single point of improvement: contribute here to have an impact, coherency 
and synergies (experiment vs analysis etc) guaranteed 

• Advantage: community knows its challenges; gets a coherent, reliable, 
performant and agreed solution

5

A. Naumann, Tuesday

ROOT • Axel Naumann, 2020-07-28, ICHEP 2020, Prague

Introducing ROOT

• ROOT is a centerpiece of HEP, virtually every HEPicist uses ROOT for analysis, 
> 1 exabyte of data in ROOT format 

• Common (also graphics) language, common data format, common grounds 

• Coherently designed, integrated solution with optimized interplay 

• Core in C++, with dynamic Python bindings

3 ROOT • Axel Naumann, 2020-07-28, ICHEP 2020, Prague

"ROOT7"

• Massive, multi-year development effort 

• Focused on main ROOT columns: 

• Analysis: parallelism, Python, RDataFrame, RooFit, TMVA 

• I/O: TTree successor RNtuple 

• Graphics: web-based graphics, GUI, event display 

• Foundational math: histograms

11

I/O is the basis

RooFit RDataFrame TMVA

ML1

ML2

ML3

I/O

PyROOT

[NumPy]

https://indico.cern.ch/event/868940/contributions/3814685/attachments/2081030/3495420/Naumann-ROOT-ICHEP-2020.pdf
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A. Naumann, Tuesday

ROOT • Axel Naumann, 2020-07-28, ICHEP 2020, Prague

RNtuple: ongoing

• See this article for why HEP uses ROOT as data format. That was TTree. 

• RNtuple is faster than anything else, even for simple cases 

• Optimized for current use cases, e.g. tweaking 
compression, parallel I/O 

• More usable: simpler, sturdier, type-safe interfaces 

• But you might not even care: use RDataFrame 
(which knows to use RNtuple internally)

18
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RDataFrame Example

20

task-based parallelism has been a goal since inception, and recent R&D [7] demonstrates that
the programming model lends itself to multi-node distributed execution with no changes.
Firstly, this paper will offer a high-level overview of RDataFrame’s software design (section
2). Section 3 will follow with a review of the most important, recently introduced features
that contribute to make RDataFrame a fully fledged lightweight data processing framework.
Finally, one real-world application of the framework and performance benchmarks are dis-
cussed in sections 4 and 5 respectively.

2 RDataFrame’s software design

Figure 1. The RDataFrame framework reads from a columnar data format via a data source, applies
transformations to the data (i.e. selects rows and/or defines new columns) and produces results (i.e.
data reductions like histograms, new ROOT files, or any other user-defined object or side effect). Data
sources for ATLAS’ xAOD data format and LHCb’s MDF binary data format exist but are not dis-
tributed with ROOT.

Figure 2. A simple C++ RDataFrame analysis that performs event selection, defines a new quantity,
produces a histogram and writes processed data to disk. All registered operations will be executed in a
single event loop.

Design principles

At a high level, RDataFrame strives to expose modern, elegant and safe interfaces. The
introduction of elements of declarative programming in the design (users say what they
need to compute, RDataFrame chooses how to compute it) provides user-visible advantages
such as less typing, increased readability and abstraction of complex operations. At the same
time, by decoupling API from underlying implementation, the declarative paradigm allows
for transparent optimisations (e.g. user-transparent parallel processing of range of events, lazy

2
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Application of Quantum Machine Learning to HEP Analysis at LHC using IBM 
Quantum Computer Simulators and Hardware,  

C. Zhou, Tuesday

https://indico.cern.ch/event/868940/contributions/3814524/attachments/2081006/3495384/GS_ICHEP_28-07-20.pdf
https://indico.cern.ch/event/868940/contributions/3814524/attachments/2081006/3495384/GS_ICHEP_28-07-20.pdf
https://indico.cern.ch/event/868940/contributions/3814682/attachments/2081041/3495447/ichep2020_diluca.pdf
https://indico.cern.ch/event/868940/contributions/3814682/attachments/2081041/3495447/ichep2020_diluca.pdf
https://indico.cern.ch/event/868940/contributions/3814309/attachments/2080749/3495472/QMLHEP_ICHEP2020.pdf
https://indico.cern.ch/event/868940/contributions/3814309/attachments/2080749/3495472/QMLHEP_ICHEP2020.pdf
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S. Timm, Wednesday

Monitoring: Transfers
• Rucio Kibana Monitoring. Shows queued, failed, submitted, 

done.

29 July 2020 S. Timm | DUNE Data Movement Experience with Rucio9

Monitoring: File size and location

29 July 2020 S. Timm | DUNE Data Movement Experience with Rucio10

•

•

•

•

M. Svatoš, Friday

https://indico.cern.ch/event/868940/contributions/3814323/attachments/2082107/3497344/ICHEP_2020_timm_rucio.pdf
https://indico.cern.ch/event/868940/contributions/3814320/attachments/2074434/3483142/ATL-SOFT-SLIDE-2020-234.pdf


Conclusions
• The HEP community has a number of challenges to address with regards to computing and software before 

the HL-LHC era

• Computation, Portability, Storage & Data Delivery, Analysis

• The good news is we have tools to deal with them, as has been shown in the Computing and Data Handling 
track of this conference

• We also need people to do the work

• Funding agencies and institutes must realise that computing and software is as important for physics as 
detector development and construction

• The days when software grows organically with the detectors are over - writing software and building 
computing systems for HEP now requires detailed project planning and management, and significant 
person power sustained over many years

• Stable career paths need to be defined for those who wish to stay in HEP and work on computing
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