

David Rousseau

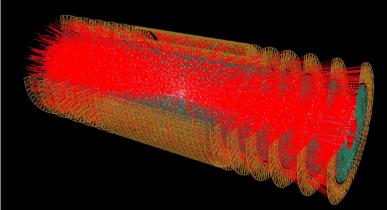
LAL-Orsay

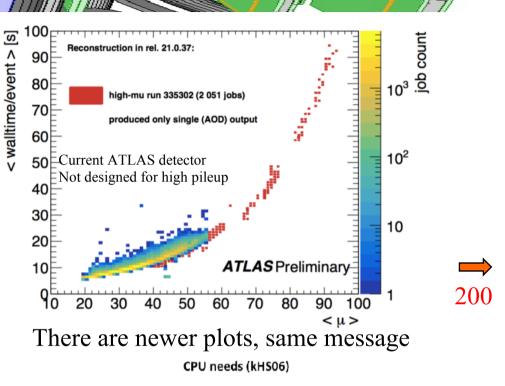
rousseau@lal.in2p3.fr @dhpmrou

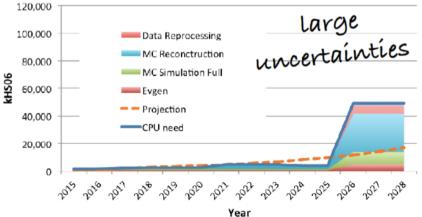
TrackML Grand Finale workshop

CERN, 1-2 Jul 2019

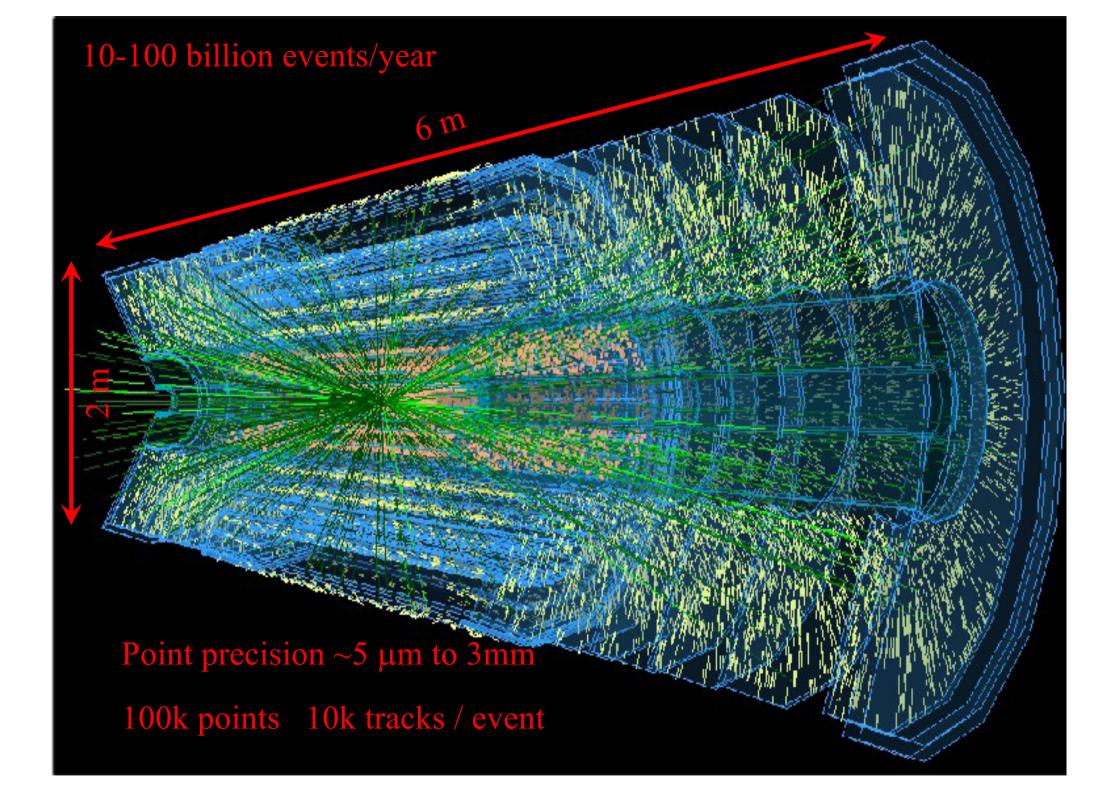
Who and How

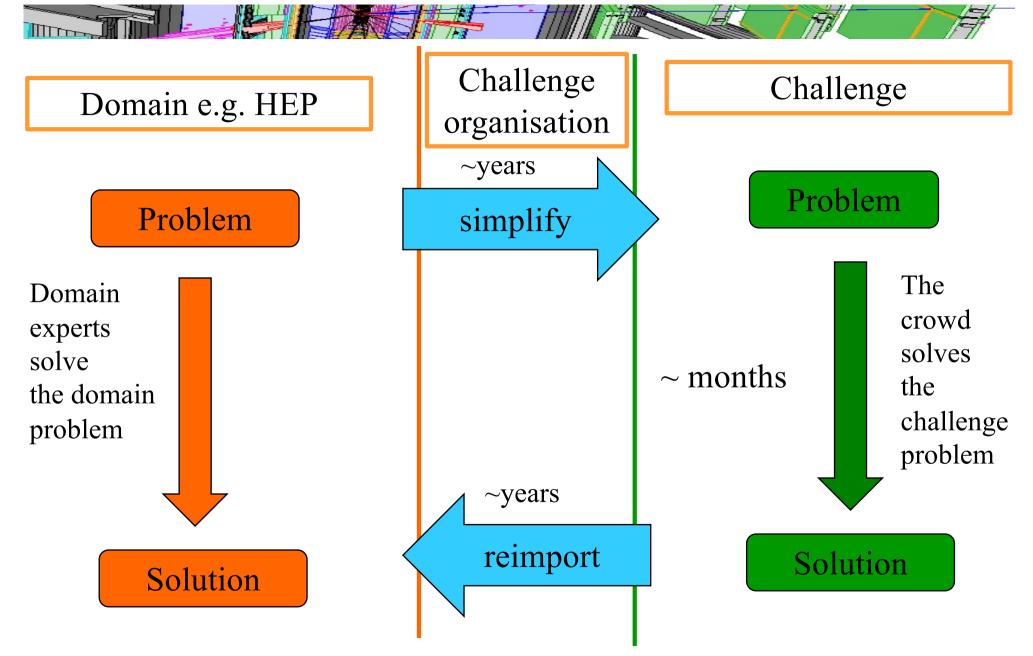

Organisation: Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University), David Rousseau, Yetkin Yilmaz (LAL-Orsay), Paolo Calafiura, Steven Farrell, Heather Gray (LBNL), Vladimir Vava Gligorov (LPNHE-Paris), Laurent Basara, Cécile Germain, Isabelle Guyon, Victor Estrade (LRI-Orsay), Edward Moyse (University of Massachussets), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex, HSE)





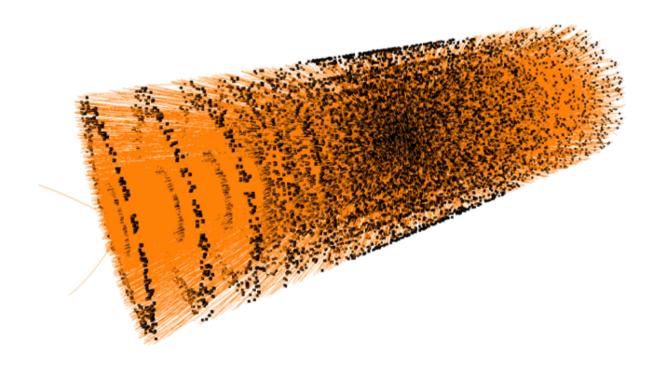
Tracking crisis


- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective : increased pileup :Run 1 (2012): <>~20, Run 2 (2015): <>~50,Phase 2 (2025): <>~200
- CPU time quadratic/exponential extrapolation (difficult to quote any number)
- Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
- >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed ?
 - Maybe no, brand new ideas from ML

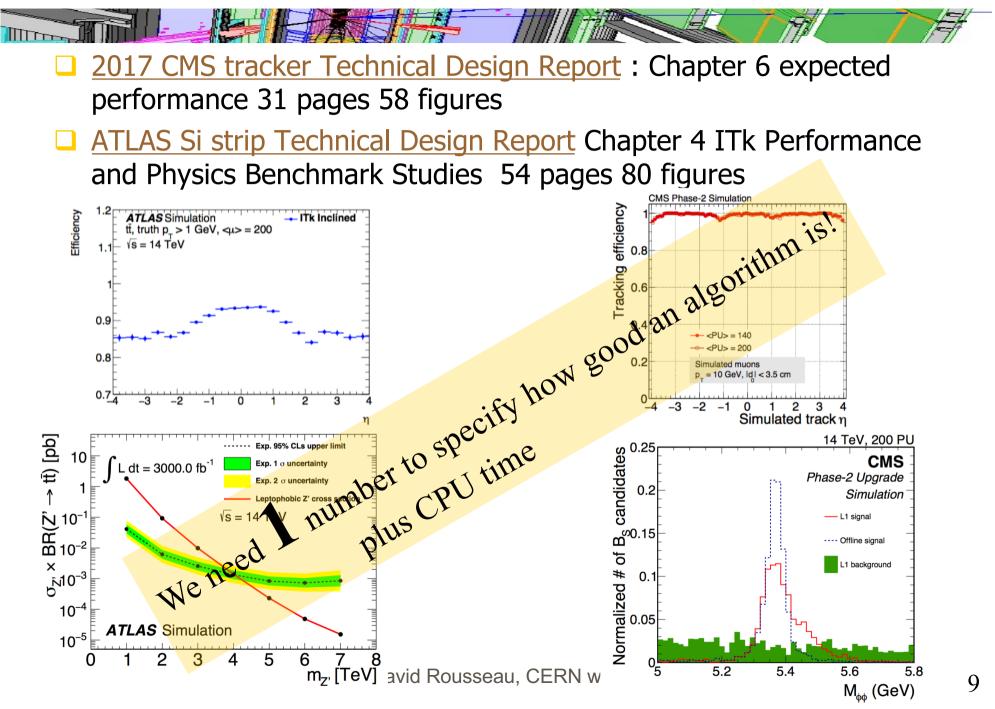


avid Rousseau, CERN workshop, 1st Jul 2019

From domain to challenge and back


TrackML Intro David Rousseau, CERN workshop, 1st Jul 2019

TrackML in a nutshell


- Accurate simulation engine (ACTS https://gitlab.cern.ch/acts/acts-core) to produce realistic events
 - o One file with list of 3D points
 - Ground truth : one file with point to particle association
 - Ground truth auxiliary : true particle parameter (origin, direction, curvature)
 - Typical events with ~200 parasitic collisions (~10.000 tracks/event)
- Large training sample 10k events, 0.1 billion tracks, 1 billion points, ~100GByte
- Accuracy phase (May to August 2018) on Kaggle
 - Participants are given the test sample (with usual split for public and private leaderboard) and run the evaluation to find the tracks
 - They should upload the tracks they have found
 - o A track is a list of 3D points
 - Score : fraction of points correctly grouped together
 - Evaluation on test sample with per-mille precision on 100 event
- □ Throughput phase Sep to Mar 2019 on Codalab
 - Strong CPU incentive

Dataset

Much more in Andreas' talk

Score

Score (2)

HEP tradition : track based evaluation

holes

good track not so good track

many compatible short tracks hits

completeness

uniqueness

low χ^2 /ndf

shared hits

bad fit quality, outliers

small impact parameter (for primaries)

clusters are compatible

Big decision : score is \sim « the weighted fraction of hits correctly associated ». Include all tracks above 150MeV

Score in more details

List intersection hits of reco tracks and true particles

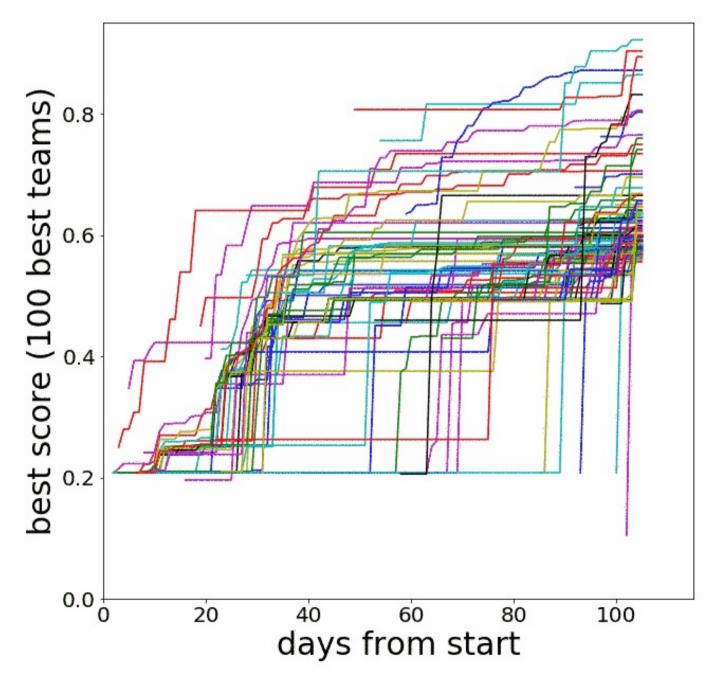
Intersection should have more than 50% of the hit of the reco track and 50% of the true particle, then:

$$score = \frac{1}{N_{evts}} \sum_{evts intersection hits} w_{track} \times w_{hit}$$

Reminiscent of $\frac{1}{U}$
Perfection : score=1.

Real life vs challenge

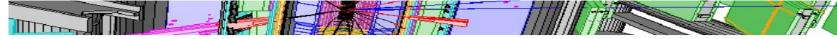
- 1. Wide type of physics events
- 2. Full detailed Geant 4 / data

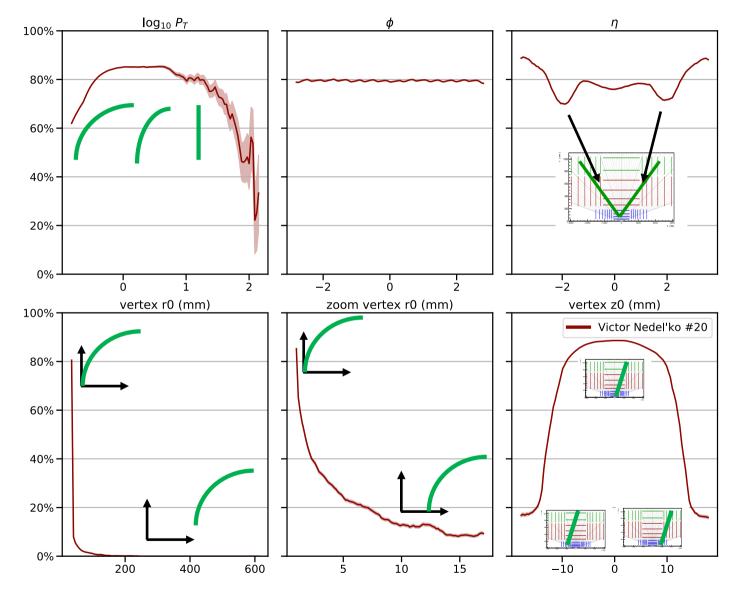

- 3. Detailed dead matter description
- 4. Complex geometry (tilted modules, double layers, misalignments...)
- 5. Hit merging
- 6. Allow shared hits
- 7. Output is hit clustering, track parameter and covariance matrix
- 8. Multiple metrics (see TDR's)

- 1. One event type (ttbar)
- 2. ACTS (MS, energy loss, hadronic interaction, solenoidal magnetic field, inefficiency)
- 3. Cylinders and slabs
- 4. Simple, ideal, geometry (cylinders and disks)
- 5. No hit merging
- 6. Disallow shared hits
- 7. Output is hit clustering
- 8. Single number metrics

Simpler, but not too simple!

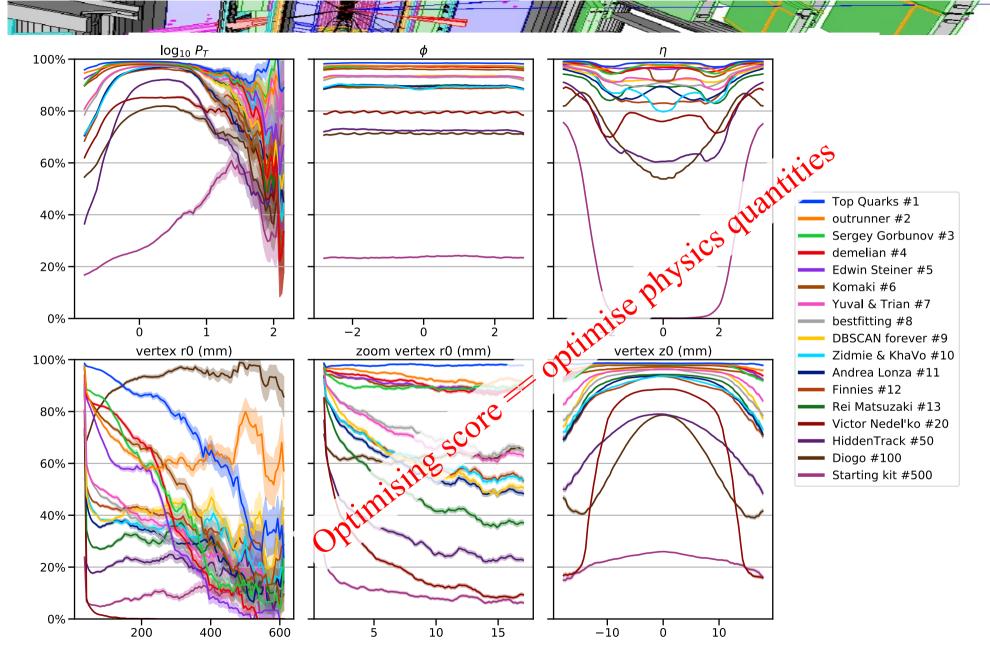
Evolution of leaderboard





Final Leaderboard

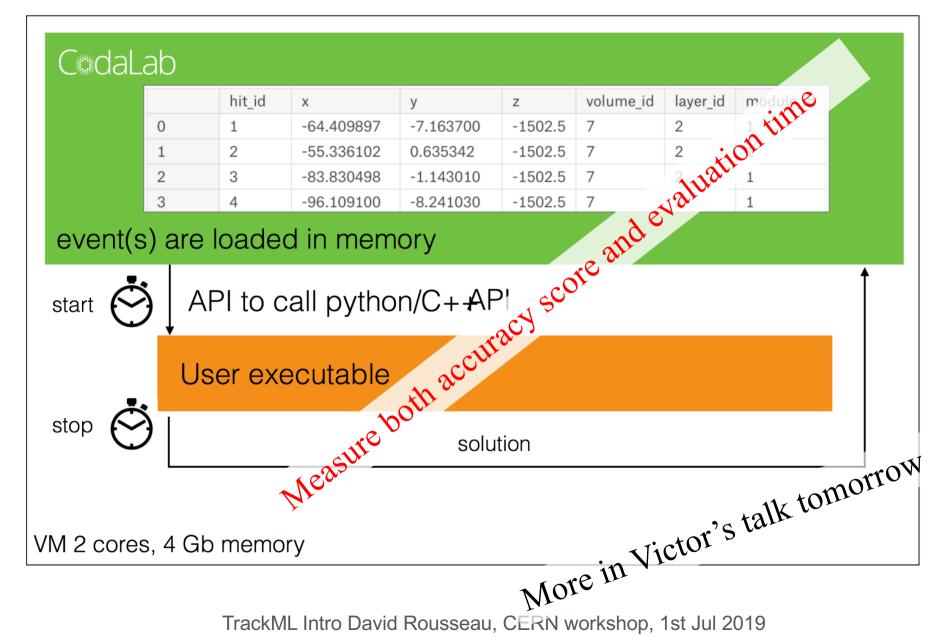
						Ž	197
1	—	Top Quarks	Covered by Moritz tomorroy	w 😵 🗎	0.92182	10	19d
2	_	outrunner	Covered by Moritz tomorroy	w 🛄	0.90302	9	18d
3	HEP	Sergey Gorbunov	Talk today	-	0.89353	6	18d
4	HEP	demelian	Talk today	-	0.87079	35	1mo
5	_	Edwin Steiner		-	0.86395	5	18d
6	_	Komaki		Singer Sugar	0.83127	22	18d
7	_	Yuval & Trian	Talk tomorrow	R	0.80414	56	18d
8	_	bestfitting			0.80341	6	18d
9	_	DBSCAN forever			0.80114	23	18d
10	_	Zidmie & KhaVo		3	0.76320	26	18d
11	_	Andrea Lonza		-	0.75845	15	18d
12	_	Finnies	Talk tomorrow	N	0.74827	56	18d
13	_	Rei Matsuzaki			0.74035	12	18d
14	_	Mickey		-	0.73217	10	2mo
15	_	Vicens Gaitan			0.70429	19	1mo
10 11 12 13 14 15 16 17 18 19	_	Robert		-	0.69955	3	21d
17	_	Yuval-CPMP tribut	e band		0.69364	20	20d
18	_	N. Hi. Bouzu		999	0.67573	9	22d
19	_	Steins;Gate		P 🚸 📓	0.66763	12	19d
20	▲1	Victor Nedel'ko		-	0.66723	4	2mo


Efficiency #20 Nedel'ko

TrackML Intro David Rousseau, CERN workshop, 1st Jul 2019

Efficiency all

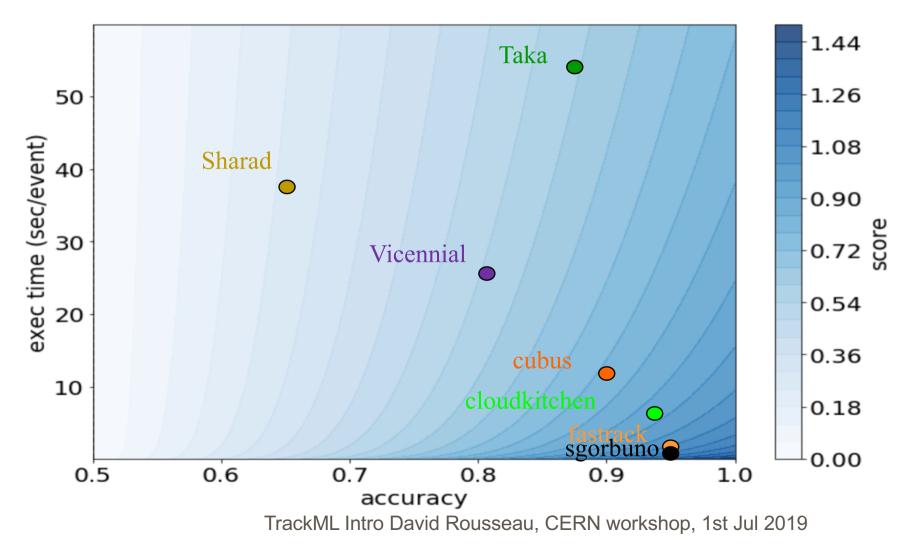
TrackML Intro David Rousseau, CERN workshop, 1st Jul 2019


Throughput Phase

Now participants submit their software... ... and are evaluated on accuracy AND speed !

Launched 6th Sep 2018 until 12th March 2019 on Codalab

Codalab Schematic

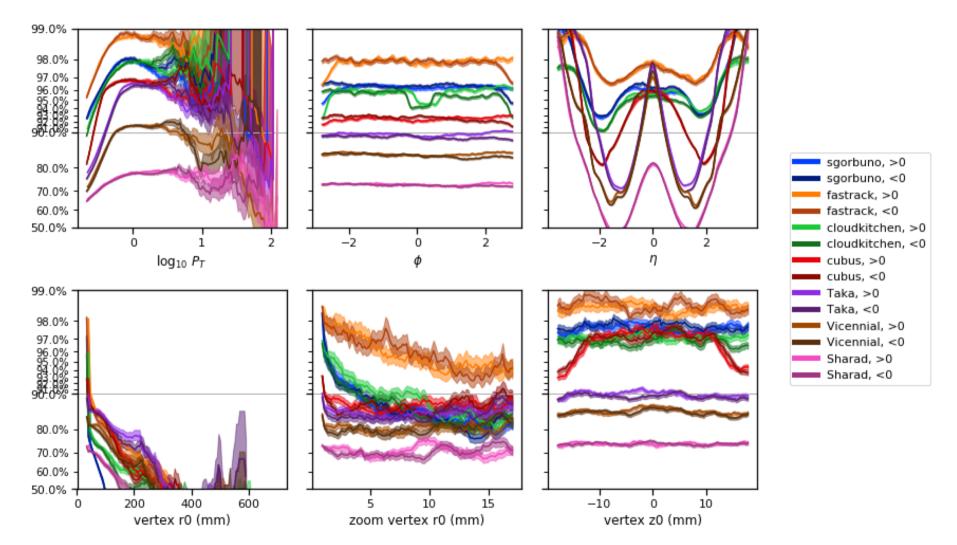

Updated dataset

Fixed bug in electron multiple scattering (was much too large)

- In thickness (was twice too large)
- Changed the scoring to only include primary track (no secondaries originating far from the origin)

Throughput results

- Ranking score including time :
 - 0 if time >600 s or accuracy <50%
 - $\sqrt{\log(1 + 600/time)} * (accuracy 0.5)^2$



Throughput phase LB

				()) () ())())()()()()()()()()()()()()()(RESULTS			Private leaderboard			
#	User	Entries	Date of Last Entry	score 🔺	accuracy_mean	accuracy_std ▲	computati (sec) 🔺		computation speed (sec/event) ▲	Duration 🔺	
1	sgorbuno HEP	9 Tal	lotoday	1.1727 (1) 1.16	0.943 0.944 (2)	0.00 (14)	28.06 (1)		0.56 (1) 0.60	64.00 (1)	
2	fastrack HEP	53 Ta	lkstoday	1.1145 (2) 1.12	0.944 0.944 (1)	0.00 (15)	55.51 (16	5)	^{1.11 (16)} 1.00	91.00 (6)	
3	cloudkitchen	73Tal	k jaday	0.9007 (3)0.897	0.927 0.927 0.928 (3)	0.00 (13)	364.00 (1	8)	7.28 (18)7.41	407.00 (8)	
4	cubus	8	09/13/18	0.7719 (4) 0.770	0.895 0.895 (4)	0.01 (9)	675.35 (1	9)	13.51 (19) 13.7	724.00 (9)	
5	Taka	11	01/13/19	0.5930 (5)	0.875 (5)	0.01 (12)	2668.50	(23)	53.37 (23)	2758.00 (13)	
6	Vicennial	27	02/24/19	0.5634 (6)	0.815 (6)	0.01 (10)	1270.73	(20)	25.41 (20)	1339.00 (10)	
7	Sharad	57	03/10/19	0.2918 (7)	0.674 (7)	0.02 (4)	1902.20	(22)	38.04 (22)	1986.00 (12)	
8	WeizmannAl	5	03/12/19	0.0000 (8)	0.133 (11)	0.01 (11)	88.08 (17	7)	1.76 (17)	124.00 (7)	
9	harshakoundinya	2	03/12/19	0.0000 (8)	0.085 (13)	0.01 (6)	49.22 (8)		0.98 (8)	86.00 (3)	
10	iWit	6	03/10/19	0.0000 (8)	0.082 (15)	0.01 (8)	48.23 (3)		0.96 (3)	85.00 (2)	
				0 0000							

Efficiency

IIII

Not quite as good as for accuracy phase: do not spend time when not worth it

Useful links

- Contact : <u>trackml.contact@gmail.com</u> <u>https://sites.google.com/site/trackmlparticle</u> Twitter : @trackmllhc
- Accuracy phase @ Kaggle : <u>https://www.kaggle.com/c/trackml-particle-identification</u>
 - →chapter in the NeurIPS 2018 Competition book <u>arXiv:1904.06778</u>, small revision on-going
- Throughput phase @ Codalab :

https://competitions.codalab.org/competitions/20112

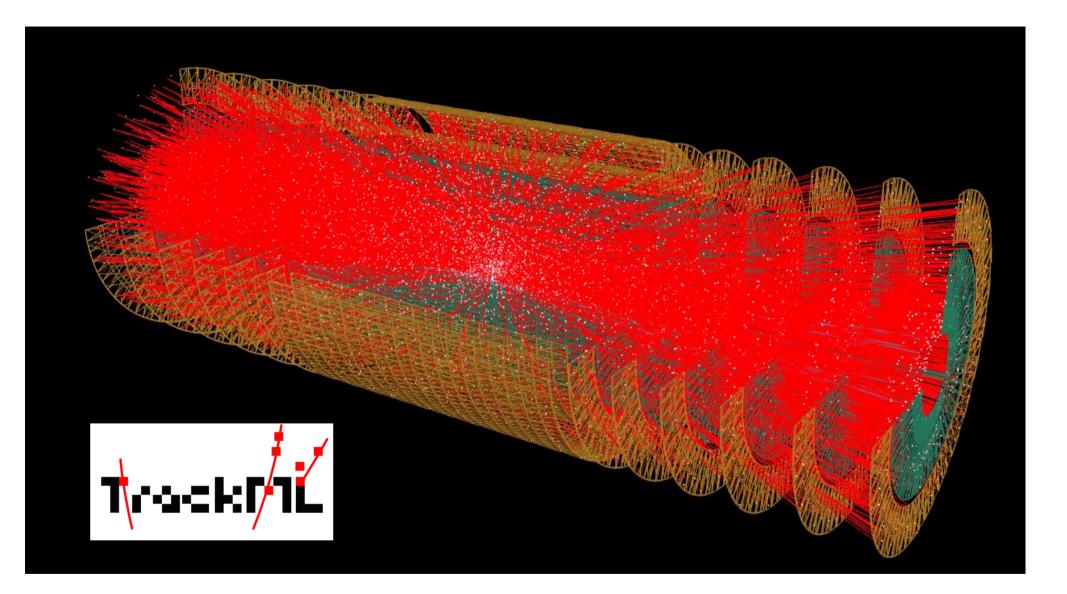
• Write-up to be finalised

TrackML Conference talks

- Connecting The Dots 2015 Seattle
- Connecting The Dots 2016 Vienna
- CHEP 2016 Okinawa
- □ Connecting The Dots / Intelligent Trackers 2017 Orsay
- NeurIPS 2017 Los Angeles CiML workshop
- Connecting The Dots 2018 Seattle
- CHEP 2018 Sofia
- UWCCI 2018 Rio de Janeiro
- □ ICHEP 2018 Seoul
- □ IEEE NSSMIC 2018 Sidney
- IEEE eScience 2018 Amsterdam
- NeurIPS 2018 Montreal Competition workshop
- ACAT 2019 Saas-Fe
- Connecting The Dots 2019 Valencia
- EPS 2019 Ghent
- CHEP 2019 Adelaïde
- …and much more workshops and seminars…

TrackML Intro David Rousseau, CERN workshop, 1st Jul 2019

TrackML timeline



Monday 1st July

13:30 → 13:50	Introduction : overview of the problem and the two phases of the challenge Speaker: David Rousseau (LAL-Orsay, FR)	©20m 🖉 ▪
13:55 → 14:15	Nvidia sponsor talk Speaker: Peter Messmer (Nvidia)	©20m 🖉 ▪
14:20 → 14:40	TrackML open dataset and CTD/WIT Valencia highlights Speaker: Andreas Salzburger (CERN)	©20m 🖉 ▪
14:45 → 15:05	TrackML Throughput #1 (and Accuracy #3) Speaker: Sergey Gorbunov (Johann-Wolfgang-Goethe Univ. (DE))	3 20m 🖉 -
15:10 → 15:30	TrackML Throughput #2 (and accuracy #4) Speaker: Dmitry Emeliyanov (Science and Technology Facilities Council STFC (GB)) TheTrackML_works	3 20m 🖉 -
15:35 → 15:55	Coffee break	O 20m
16:00 → 16:20	TrackML Throughput #3 Speaker: Marcel Kunze (Heidelberg University)	320m 🖉 🕶
16:25 → 16:45	Spin-off : TrackML Hololens visualisation Speakers: Tobias Isenberg (Inria), Xiyao Wang	320m 🖉 🕶
16:50 → 17:10	UniGe sponsor talk : Hardware efficient meshes in computational fluid dynamics Speaker: Jonas Latt (Université de Genève)	𝔅 20m 🖉 ▾
17:15 → 17:35	Kaggle sponsor talk (remote) Speaker: Walter Reade (Kaggle)	©20m 🖉 ▪

Tuesday 2nd July

13:30 → 13:50	Throughput accuracy : overview of solutions not covered	🛇 20m 🖉 🗸
	Speaker: Moritz Kiehn (Universite de Geneve (CH))	
13:55 → 14:10	Trackml challenge implementation in Codalab	𝔅 15m 🖉 ▾
	Speaker: Mr Victor Estrade (LRI)	
14:15 → 14:35	Throughput accuracy HepML prize (Yuval and Reina)	320m 🖉 -
	Speaker: Yuval Reina	
14:40 → 15:00	TrackML Accuracy NeurIPS invite : LSTM by the Finnies	320m 🖉 -
	Speakers: Liam Finnie, Nicole Finnie (nicole.lin@gmail.com)	
15:05 → 15:25	Spin-off Similarity hashing and learning for tracks reconstruction	320m 🖉 -
	Speaker: Sabrina Amrouche (Université de Geneve (CH))	
15:30 → 15:50	Spin-off : Hep.TrkX	🕲 20m 🖉 🗸
	Speaker: Jean-Roch Vlimant (California Institute of Technology (US))	
15:55 → 16:15	Coffee break	() 20m
16:15 → 16:35	Future usage of TrackML dataset	© 20m 🖉 -
10.10	Speaker: Andreas Salzburger (CERN)	
16.40		
16:40 → 17:30	Final discussion	𝔅 50m 🖉 ▾

TrackML Grand Finale workshop CERN, 1st-2nd July 2019