
The FASTrack solution

Dmitry Emeliyanov

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 1

Filter and Automaton for Silicon Tracking

https://github.com/demelian/fastrack

Outline

• The state-of-the art approach and why it’s (relatively) slow

• The track finding methods and the FASTrack’s place among them

• The FASTrack solution: key ideas and techniques
• track finding on graphs and its efficient implementation

• Kalman filter and the magnetic field model

• Conclusion and outlook

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 2

The state-of-the-art

• The Kalman filter-based track following is the main track
finding algorithm used in ATLAS and CMS experiments
• high track finding efficiency provided by the multi-pass seeding

• Kalman filter accounts for various detector material effects
providing precise track parameter estimates

• The problem with this approach is that its compute time
scales non-linearly with hit multiplicity
• determined the number of simultaneous pp collisions (PileUp)

• For the future LHC upgrade with pileup levels up to 200 we will
need x10 speed-up of the tracking in order to stay within the flat
budget of computing resources

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 3

Selection
track
seeds

track seeding

track following

triplets
of hits KFseedseedCPU TNTT ~


hitsseed NN ~

The CPU timing model :

where and 𝛼 ≈ 2.5

CPU time vs. the number
of interactions

N seeds (PU80) N tracks

Total Accepted

19750 4280 1220

sequence of track fragments = points in track parameter space

Track finding using cellular automata with graph-based track models

point in the track parameter space or
function space of possible track shapes

Pattern recognition using integral transforms
(Radon, Hough), pattern (template) matching

sequence of hits in the detector

Sequential, “step-by-step”, data association
e.g. the track following using Kalman filter

a sequence of hits in the detector

Classification of the track finding methods

A track is

1 2

3

a point in the track parameter space or in a
function space of possible track shapes

a sequence of track fragments = points in track parameter space

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 4

• There are several groups of the track finding methods – the fundamental difference lies in
the way how they define a track in the detector :

track parameter space

FASTrack

The FASTrack solution

• track finding is done in 3 passes with hit masking after each pass:
• high-pT central tracks, low-pT central tracks, the rest of the tracks

• formation of the hit-pair graph: hit pairs are vertices, connected hit pairs (i.e. triplets) are edges
• the pairs of layers for hit pair formation are learned from data: track movement from layer to layer is treated as Markov

process and state transition probabilities are measured using training data

• using clusters shape to predict track inclination angles and avoid wrong hit pairs:
• it was added for the Codalab Phase, greatly improved the accuracy and made the algorithm much faster

• traversal of the hit-pair graph with an embedded Kalman filter for fast discovery of track candidates

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 5

post-competition version:

Accuracy: 0.944

Time/event: 1.1 sec

Memory: 0.6 Gb

Accuracy: 0.948

Time/event: 0.8 sec

• combination of the graph-based track finding (GTF) and the
standard Kalman filter-based track following (TF) :
• the GTF algorithm discovers the bulk of the tracks

• the TF puts “finishing touches”: extends tracks to the layers not covered
by the graph and fills the “holes” on tracks thus compensating the loss
of hits if only a short fragment of a track is discovered by the GTF

Accuracy Phase score: 0.87

Throughput Phase:

Track finding on graphs

• General idea:
• find short track segments, e.g. pairs or triplets of hits

• create a graph of track segments by setting admissible connection between
segments

• a track is defined as an optimal (in some sense) path on the graph

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 6

• Example:
– the segments connect hits

• in the adjacent layers

• across one layer

– admissible connections:
• segments have common hit

• small breaking angle  1,  ii ss

Recursive track search on a graph

• Let be a sequence of connected track segments

• Consider the following “best-path” criterion
• the number of connected segments with imposed cut on the breaking angles

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 7

 kk ssS ,...,1

   cut a is ,
false if,0

true if,1
)(,,)(

1

1

1 














x

x
xIssISJ

k

i

iik 

• satisfies Bellman recursion property:

– so that optimal segment sequences (i.e. track candidates) can be constructed
recursively by the dynamic programming algorithm

)(max* SJJ
S



       


1

*

1

* ,max
1k

kk
s

kk ssISJSJ 

The cellular automaton approach

CELL 3 CELL 2 CELL 1

Track segments are called cells, cell can have neighbours – connected
segments, cell connections are oriented (i.e. from the inside of the tracker)

Each cell has a state – positive integer number

The algorithm works on the cell set and has two distinct phases :

• Forward recursion:

if cell i with the state 𝒔𝒊 has a neighbour j with the equal state 𝒔𝒋 = 𝒔𝒊 then,

at the next iteration, the state is incremented:

𝒔𝒊 = 𝒔𝒋 + 1

Iter 0

Iter 1

Iter 2

s=1s=1 s=1

s=2 s=2s=1

s=3s=2s=1

The iterations stop when there is no neighbouring cells with equal states.
The final cell state is equal to the length of the segment sequence which
can be traced to the left starting from this segment

• Backward pass: Find the cell with the highest state S, then find its neighbour with S-1 and so on until state=1. If there
are a few neighbours with the same state, take the segment with the smallest breaking angle. The backward pass is
repeated the next best cell/state until all the track candidates starting from segments above the threshold are collected

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 8

Historically, it was the first algorithm
for track finding on graph models

CA in action

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 9

start iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6
backward pass

Line width indicates a cell state, color Red: state updated at the iteration, Black: no state update

Efficient implementation

• Due to the large number of cell state look-ups the CA-based implementation
of the forward recursion is computationally inefficient

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 10

• More efficient is to use the Dynamic Programming (DP) recursion :
• we maintain the set of cells 𝑈𝑖 updated at the 𝑖 − 𝑡ℎ iteration

• it’s easy to show that the following inclusion takes place:

𝑈𝑖+1⊂ 𝑈𝑖 ⊂ 𝑈𝑖−1 ⊂ 𝑈𝑖−2… ,

so that no cells outside the set 𝑈𝑖 will be updated at the next iteration

• therefore only the cells updated at the current iteration must be checked
for possible updates at the next iteration

• After replacing the CA with the above computational scheme the
FASTrack CPU time was reduced by 30% from 1.1 s to 0.8 s

𝑈1

𝑈2

𝑈3

The subsets of
updated cells

𝑈4

Track following on a graph

• The idea is to embed Kalman filter in the backward pass of the graph-based tracker :
• hence the name “Filter and Automaton for Silicon Tracking” : FASTrack

• it’s a crude track following which operates on connected track segments rather than on hits

• works with “seeds” which are guaranteed to lead to good track candidates thus saving CPU time

• The filter tracks ,q angles rather than positions using simple dynamics model :
• random walk for the r-z plane (non-bending), AR(1) model for the r-phi plane (bending) – fitting a

trend in  evolution along a track rotating in the magnetic field

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 11

seed 1

seed 2

The Kalman filter and magnetic field model

• Using the model derived in https://arxiv.org/abs/1003.3720
• the third order approximation (w.r.t. cos 𝜃) for the field inside a finite

solenoid

• free parameters: field at (0,0,0), solenoid length L, solenoid aspect ratio
(R/L) – learned from data by maximizing accuracy score via parameter
scan

• Track parameter and covariance extrapolation in the Kalman Filter
• the KF is used for track extension to the long strip volumes (16,17,18) and

for precise track fitting which calculates 𝜒2and track likelihood

• the extrapolation between two detector planes requires solving the
boundary value problem (BVP) as the extrapolation step depends on track
parameters and field and cannot be calculated analytically

• the BVP is solved by the shooting method with 3rd order Runge-Kutta
integrator

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 12

Field inside a finite solenoid

𝐵𝑧

𝐵𝑟
𝑧

https://arxiv.org/abs/1003.3720

FASTrack : hit pair prediction

• Due to huge number of hit pairs (up to 1.5 million) the pair creation and the graph
building are the most time consuming parts of the FASTrack algorithm
• similar to the “Top Quarks” and “outrunner” solutions the FASTrack uses cluster shapes to predict if

two hits belong to the same track in order to reduce the number of wrong pairs

• min/max as functions of cluster width were extracted from training data

• for faster prediction the decision function was approximated by a LookUp Table (LUT)

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 13

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1 2 3 4 5 6 7 8 9 10 11

Detector 1

hit_1

hit_2cluster length

𝜃 z-axis

cot 𝜃

cluster length, pixels

Detector 2

hit pair accepted

cot 𝜃

Conclusion and outlook

• The FASTrack demonstrated the feasibility of combining
• the fast track discovery using graph models

• the Kalman filter-based track following

• Further algorithm improvements could include
• z-vertexing: detecting interaction vertices – origins of the tracks before the actual track finding

• integration of the z-vertexing with the graph formation/track finding process

• staged graph formation/forward recursion driven by a layer-pair DAG trained on data

• Looking further ahead:
• As we have seen, some of the best solutions employ the multi-pass track finding :

• they disentangle the combinatorial puzzle of data association starting with “easy” tracks and gradually reducing the
amount of data while progressing towards more complex cases

• it more like progressive “explaining data away” rather than just labelling the hits

• Ultimate goal for further research (as far as I can see it) :
• development of some reasonably fast (e.g. hardware-accelerated) AI-like solutions which could reproduce the

above type of approach/reasoning

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 14

The End

01/07/2019 TrackML Challenge: grand finale, CERN, 1-2 July 2019 15

Thanks to all organizers and participants for the interesting challenge!

