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Accuracy #9: DBSCAN forever (Jury Clustering Prize)

Jean-Francois Puget “CPMP”
Software engineer at IBM in France
https://github.com/jfpuget/Kaggle_TrackML

https://github.com/jfpuget/Kaggle_TrackML


DBSCAN?

Density-based clustering
● Few parameters:

distance, min #, (metric)
● Simple and available
● Used in starting kit

score ≈ 0.2

wikipedia.org/wiki/DBSCAN

https://en.wikipedia.org/wiki/DBSCAN


DBSCAN forever – Improvements

Hough-transform-like unfolding 
for helix model

● Pick a (r0, z0) pair
● Compute ρ, ɸ, η-like for 

each hit
● Assumes d0 = 0

Run for many (r0, z0) pairs
Different parameters for inner/
outer detectors

From CPMP Kaggle post

Magnetic field extracted from data



DBSCAN forever – Efficiencies

Probably:
d0 = 0 
assumption in 
helix unrolling



DBSCAN forever – Take away

Manually tuned, classical 
algorithm with smart 
preprocessing

Implementation
● Pure python
● DBSCAN from scikit-learn

Runtime
● 3Gb per worker
● Timing unknown



Accuracy #2: outrunner

Pei-Lien Chou
Software engineer image-based deep 
learning in Taiwan.
Kaggle Notebook

https://www.kaggle.com/outrunner/trackml-2-solution-example


outrunner – Setup

Train DNN on hit pairs
● 27 inputs (x,y,z,cells,…)
● 4k-2k-2k-2k-1k hidden layers

Compute full hit adjacency 
matrix: probability P(i,j) that 2 
hits match
Pick high probability comb.
Helix-like fit for cleaning

Graphics from outrunner



outruner – Efficiencies



outrunner – Take away

True Deep Learning Solution
● No track following
● No geometric modelling

But: slow execution

Implementation
● Pure python
● Keras for ML

Runtime
● multiple hours / event



Accuracy #1: Top Quarks
Johan Sokrates Wind “icecuber”
Industrial Mathematics Master student in 
Norway (main contributor)
Erling Solberg “erlinsol”
https://github.com/top-quarks/top-quarks

https://github.com/top-quarks/top-quarks




Ordered pair of 
reachable layers

Pair features
(hiti, hitj)≡P

Candidate pairs
{(hiti, hitj)}

All
 

combinations

Pruned by
 binary

 
classification

on P

Top Quarks – Pair generation

Illustration from J-R. Vlimant

Logistic regression on test data



Top Quarks – Extension to triplets

Candidate pair
(hiti, hitj)

Triplet Features
(hiti, hitj, hit{k})≡{Tk}

Line extrap.
 to next layer.

Search area for 
10:1 outlier density.

Candidate triplets
(hiti, hitj, hit{k})

At most 10
Binary

classification
 on Tk

Illustration from J-R. Vlimant



Top Quarks – Extension to tracklets

Candidate triplet
(hiti, hitj, hitk)

Candidate tracklet
{hiti}

Helix extrap.from the 3 
outermost hits.

Closest hit
selected

Candidate tracklet
{hiti}

Helix extrap. from the 3 
innermost hits.

Closest hit
selected

Illustration from J-R. Vlimant

Extrapolation w/ 2nd order circle approximation
Magnetic field from data



Top Quarks – Module overlap

Candidate tracklet
{hiti}

Candidate tracklet
{hiti}

Add closest hit
to each hit on 

each layer

Illustration from J-R. Vlimant



Top Quarks – Track assembly

Candidate tracklets
 { {hiti}j }

Final tracklets
 { {hiti}j }

Score based on
expected

number of 
outliers along

the tracks

Tracklets scores
 { ({hiti}j,Sj

) }

Recursively 
promote 

best track and
remove their

hits from the rest

Illustration from J-R. Vlimant

Interesting idea:
Model noise instead of signal



Top Quarks – Efficiencies

A bit strange, 
but exists in 
almost every 
submission

Good



Top Quarks – Take away

Custom algorithm:
Track following with ML 
sprinkles on top

Custom implementation w/ fast 
runtime enables fast 
experimentation
Served as inspiration for 
throughput phase, e.g. #3 
Marcel Kunze

Implementation
● Custom C++ code
● Custom quad-tree based hit 

lookup
● Python/scikit-learn for 

training
Runtime

● 8min / event
● Memory 2.8Gb avg, 4Gb max



Accuracy #100: diogo (Organizer’s pick)

Diogo R. Ferreira
Researcher at the University of Lisbon, 
focusing on data science and nuclear fusion
https://github.com/diogoff/trackml-100

https://github.com/diogoff/trackml-100


diogo – Routes

Graphics from github.com/diogoff/trackml-100

Build routes from truth
● All seen sequences of 

traversed modules
● Average estimates for 

shared sequences
On reconstruction

● Pick closest route(s) to hit
● Select route by distance

Similar to LHC triggers

https://github.com/diogoff/trackml-100


diogo – Efficiencies

High 
performance 
for displaced 
vertices



Summary

Interesting solutions from non-
domain experts
Simple algorithms can be quite 
powerful
But, this is a complex problem 
that sometimes requires 
complex solutions

Details e.g. in NEURIPS chapter
arXiv:1904.06778

http://arxiv.org/abs/1904.06778
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