
Other solutions submitted to
the TrackML challenge

Moritz Kiehn
Université de Genève
For the TrackML organizers and participants
TrackML Grand Finale, CERN, 02.07.2019



Accuracy phase
Dedicated talk
Dedicated talk

Dedicated talk

Dedicated talk

100



Accuracy #9: DBSCAN forever (Jury Clustering Prize)

Jean-Francois Puget “CPMP”
Software engineer at IBM in France
https://github.com/jfpuget/Kaggle_TrackML

https://github.com/jfpuget/Kaggle_TrackML


DBSCAN?

Density-based clustering
● Few parameters:

distance, min #, (metric)
● Simple and available
● Used in starting kit

score ≈ 0.2

wikipedia.org/wiki/DBSCAN

https://en.wikipedia.org/wiki/DBSCAN


DBSCAN forever – Improvements

Hough-transform-like unfolding 
for helix model

● Pick a (r0, z0) pair
● Compute ρ, ɸ, η-like for 

each hit
● Assumes d0 = 0

Run for many (r0, z0) pairs
Different parameters for inner/
outer detectors

From CPMP Kaggle post

Magnetic field extracted from data



DBSCAN forever – Efficiencies

Probably:
d0 = 0 
assumption in 
helix unrolling



DBSCAN forever – Take away

Manually tuned, classical 
algorithm with smart 
preprocessing

Implementation
● Pure python
● DBSCAN from scikit-learn

Runtime
● 3Gb per worker
● Timing unknown



Accuracy #2: outrunner

Pei-Lien Chou
Software engineer image-based deep 
learning in Taiwan.
Kaggle Notebook

https://www.kaggle.com/outrunner/trackml-2-solution-example


outrunner – Setup

Train DNN on hit pairs
● 27 inputs (x,y,z,cells,…)
● 4k-2k-2k-2k-1k hidden layers

Compute full hit adjacency 
matrix: probability P(i,j) that 2 
hits match
Pick high probability comb.
Helix-like fit for cleaning

Graphics from outrunner



outruner – Efficiencies



outrunner – Take away

True Deep Learning Solution
● No track following
● No geometric modelling

But: slow execution

Implementation
● Pure python
● Keras for ML

Runtime
● multiple hours / event



Accuracy #1: Top Quarks
Johan Sokrates Wind “icecuber”
Industrial Mathematics Master student in 
Norway (main contributor)
Erling Solberg “erlinsol”
https://github.com/top-quarks/top-quarks

https://github.com/top-quarks/top-quarks




Ordered pair of 
reachable layers

Pair features
(hiti, hitj)≡P

Candidate pairs
{(hiti, hitj)}

All
 

combinations

Pruned by
 binary

 
classification

on P

Top Quarks – Pair generation

Illustration from J-R. Vlimant

Logistic regression on test data



Top Quarks – Extension to triplets

Candidate pair
(hiti, hitj)

Triplet Features
(hiti, hitj, hit{k})≡{Tk}

Line extrap.
 to next layer.

Search area for 
10:1 outlier density.

Candidate triplets
(hiti, hitj, hit{k})

At most 10
Binary

classification
 on Tk

Illustration from J-R. Vlimant



Top Quarks – Extension to tracklets

Candidate triplet
(hiti, hitj, hitk)

Candidate tracklet
{hiti}

Helix extrap.from the 3 
outermost hits.

Closest hit
selected

Candidate tracklet
{hiti}

Helix extrap. from the 3 
innermost hits.

Closest hit
selected

Illustration from J-R. Vlimant

Extrapolation w/ 2nd order circle approximation
Magnetic field from data



Top Quarks – Module overlap

Candidate tracklet
{hiti}

Candidate tracklet
{hiti}

Add closest hit
to each hit on 

each layer

Illustration from J-R. Vlimant



Top Quarks – Track assembly

Candidate tracklets
 { {hiti}j }

Final tracklets
 { {hiti}j }

Score based on
expected

number of 
outliers along

the tracks

Tracklets scores
 { ({hiti}j,Sj

) }

Recursively 
promote 

best track and
remove their

hits from the rest

Illustration from J-R. Vlimant

Interesting idea:
Model noise instead of signal



Top Quarks – Efficiencies

A bit strange, 
but exists in 
almost every 
submission

Good



Top Quarks – Take away

Custom algorithm:
Track following with ML 
sprinkles on top

Custom implementation w/ fast 
runtime enables fast 
experimentation
Served as inspiration for 
throughput phase, e.g. #3 
Marcel Kunze

Implementation
● Custom C++ code
● Custom quad-tree based hit 

lookup
● Python/scikit-learn for 

training
Runtime

● 8min / event
● Memory 2.8Gb avg, 4Gb max



Accuracy #100: diogo (Organizer’s pick)

Diogo R. Ferreira
Researcher at the University of Lisbon, 
focusing on data science and nuclear fusion
https://github.com/diogoff/trackml-100

https://github.com/diogoff/trackml-100


diogo – Routes

Graphics from github.com/diogoff/trackml-100

Build routes from truth
● All seen sequences of 

traversed modules
● Average estimates for 

shared sequences
On reconstruction

● Pick closest route(s) to hit
● Select route by distance

Similar to LHC triggers

https://github.com/diogoff/trackml-100


diogo – Efficiencies

High 
performance 
for displaced 
vertices



Summary

Interesting solutions from non-
domain experts
Simple algorithms can be quite 
powerful
But, this is a complex problem 
that sometimes requires 
complex solutions

Details e.g. in NEURIPS chapter
arXiv:1904.06778

http://arxiv.org/abs/1904.06778

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

