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Introduction 

Main stages

 Clustering – using sparse binning

 Also include basic track merging and outliner filtering

 ML track merging

 Track extension 



Clustering 

Main Principle:

 For every hit, calculate N features. 

 Try to find hits who's features are close enough 

and give them the same TrackID



Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial 
Momentum

b) 𝑧0 ≅ initial position in the Z 
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope 
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Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial Momentum

b) 𝑧0 ≅ initial position in the Z axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope 

d) 𝜃 = arctan
𝑝𝑦

𝑝𝑥

e) 𝜙 = arctan
𝑝𝑧

𝑝𝑥2+𝑝𝑦2

Independent variables

I. 1/R

II. 𝑧0

Hit’s features

1. 𝜃− = arctan
𝑦

𝑥

2. 𝑟 = 𝑥2 + 𝑦2

3. Δ𝜃 = arcsin
𝑟

2𝑅

4. 𝜃 = 𝜃− + Δ𝜃

5. 𝜙_ = arctan
𝑧−𝑧0

2𝑅⋅Δ𝜃

Final features

1. sint = sin 𝜃

2. cost = cos 𝜃

3. 𝜙∗ = arctan
𝑧−𝑧0

10.3⋅Δ𝜃⋅𝑅



Binning 

Clustering Binning



Sparse Uniform Binning

For features x,y in [-1,1]

ex , ey = rand([-0.5,0.5])  

ID(x) = int(x*Num_bins/2+ex)

ID(x,y) = ID(x)*Num_bins+ID(y)

• Bins are spread uniformly

• Most bins are empty and there is a large distance 

between non-empty bins

For a given set of independent variables 

the track ID for every hit can be calculated independently 



Track Merging/Selection

 A set of tracks is formed by randomly selecting Z0, R, Ex, Ey

 We count the number of hits with the same track ID 

 When merging 2 sets of tracks, every hit gets the track ID which has 

the largest number of members (and the number of members is 

recalculated).

 Every N sets of tracks, the surviving tracks are refined, and long 

enough tracks are permanently set:

 Refined – can’t have 2 hits with same detector ID, at most 2 hits can be from 

the same layer.

 Permanently set – Hit’s belonging to these tracks are removed from the pool



ML – Track Merging/Selection

Choose Tracks according to a Good/Bad critiria using ML

 Extract features for every track:

 variance of x,y,z (these are the most important)

 minimum of x,y,z

 maximum of x,y,z

 mean of z

 volume_id of first hit

 number of clusters per track (i.e. are there many hits, which are close together?)

 number of hits divided by number of clusters

 Use LightGBM to score the tracks

 Training:

 Target = 1  - True tracks from the training set

 Target = 0 – False tracks created by the clustering algorithem

 Results ~ 95% for precision, accuracy and recall



Track Extension 

 Sparse binning only clusters very “accurate” hits => Some of the track’s 

hits are left out.

 In the track extension phase we try to extend a track by adding loose 

hit’s which are close to the track.

 In practice we try to add hits from short tracks to long tracks



The Full Solution

 First Clustering Stage

For j in range(N):

For i in range(500):

Randomly choose 2 independent variables

Calculate TrackID for every hit (Clustering) to create a single TrackID set

Merge New TrackID set with the current merged TrackID set

Check all tracks and remove outliner hits

If len(track)>MaxLen – fix the track by removing it’s hits from the hit pool

 ML merging:

Do the clustering stage M times

Use ML to score every track

Every hit get the TrackID with the maximum score

 Extend tracks 



Results

Number Of track 

sets

Score Score after 

extension

1000 0.51

1600 0.56

5500 0.636 0.73

100000 0.73 0.78

7 * 100000 (+ML) 0.78 0.804

Basic Clustering and Merging

Machine Learning

• 7 * 100000        +0.01

• 64 * 1000         0.51      0.78



Further Improvements

 Speed

 Feature Calculation

 Computing TrackID for 120,000 hits on single i5 core: 4mSec

 TrackID for 100,000*120,000 hits should take a few seconds on Tesla V100

 Merging

 The slow part in the algorithm – counting the number of hits per unique TrackID – in 

python needs to use numpy.unique – O(Nlog(N))  [use sort]

 Can be O(N) => huge speed up (takes more memory)

 Hybrid solution:

 Can be used to create a large number of good short tracks fast, as the 1st stage in a 

more accurate algorithm

 Use a corrected magnetic field – add 0.02 to the final score



Weaknesses 

 Tracks that starts far from the origin are very hard to find

 We couldn’t find an improvement which would find such tracks



Thank You


