
Trian Xylouris

Yuval Reina

Sparse Binning Clustering

Enhanced by ML Track Scoring

Yuval Reina, Tel-Aviv Israel, Yuval.reina@gmail.com

Trian Xylouris, Frankfurt am Main Germany, t.xylouris@gmail.com

Team Name: Yuval & Trian

Private Leaderboard Score: 0.80414

Private Leaderboard Place: 7

Github : https://github.com/tx1985/kaggle-trackML

Kaggle Kernel : https://www.kaggle.com/yuval6967/7th-place-clustering-

extending-ml-merging-0-75

https://github.com/tx1985/kaggle-trackML
https://www.kaggle.com/yuval6967/7th-place-clustering-extending-ml-merging-0-75

Introduction

Main stages

 Clustering – using sparse binning

 Also include basic track merging and outliner filtering

 ML track merging

 Track extension

Clustering

Main Principle:

 For every hit, calculate N features.

 Try to find hits who's features are close enough

and give them the same TrackID

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial
Momentum

b) 𝑧0 ≅ initial position in the Z
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial
Momentum

b) 𝑧0 ≅ initial position in the Z
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope
𝜃 X

Y

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial
Momentum

b) 𝑧0 ≅ initial position in the Z
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope

Z

𝜙

l

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial Momentum

b) 𝑧0 ≅ initial position in the Z axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope

d) 𝜃 = arctan
𝑝𝑦

𝑝𝑥

e) 𝜙 = arctan
𝑝𝑧

𝑝𝑥2+𝑝𝑦2

Independent variables

I. 1/R

II. 𝑧0

Hit’s features

1. 𝜃− = arctan
𝑦

𝑥

2. 𝑟 = 𝑥2 + 𝑦2

3. Δ𝜃 = arcsin
𝑟

2𝑅

4. 𝜃 = 𝜃− + Δ𝜃

5. 𝜙_ = arctan
𝑧−𝑧0

2𝑅⋅Δ𝜃

Final features

1. sint = sin 𝜃

2. cost = cos 𝜃

3. 𝜙∗ = arctan
𝑧−𝑧0

10.3⋅Δ𝜃⋅𝑅

Binning

Clustering Binning

Sparse Uniform Binning

For features x,y in [-1,1]

ex , ey = rand([-0.5,0.5])

ID(x) = int(x*Num_bins/2+ex)

ID(x,y) = ID(x)*Num_bins+ID(y)

• Bins are spread uniformly

• Most bins are empty and there is a large distance

between non-empty bins

For a given set of independent variables

the track ID for every hit can be calculated independently

Track Merging/Selection

 A set of tracks is formed by randomly selecting Z0, R, Ex, Ey

 We count the number of hits with the same track ID

 When merging 2 sets of tracks, every hit gets the track ID which has

the largest number of members (and the number of members is

recalculated).

 Every N sets of tracks, the surviving tracks are refined, and long

enough tracks are permanently set:

 Refined – can’t have 2 hits with same detector ID, at most 2 hits can be from

the same layer.

 Permanently set – Hit’s belonging to these tracks are removed from the pool

ML – Track Merging/Selection

Choose Tracks according to a Good/Bad critiria using ML

 Extract features for every track:

 variance of x,y,z (these are the most important)

 minimum of x,y,z

 maximum of x,y,z

 mean of z

 volume_id of first hit

 number of clusters per track (i.e. are there many hits, which are close together?)

 number of hits divided by number of clusters

 Use LightGBM to score the tracks

 Training:

 Target = 1 - True tracks from the training set

 Target = 0 – False tracks created by the clustering algorithem

 Results ~ 95% for precision, accuracy and recall

Track Extension

 Sparse binning only clusters very “accurate” hits => Some of the track’s

hits are left out.

 In the track extension phase we try to extend a track by adding loose

hit’s which are close to the track.

 In practice we try to add hits from short tracks to long tracks

The Full Solution

 First Clustering Stage

For j in range(N):

For i in range(500):

Randomly choose 2 independent variables

Calculate TrackID for every hit (Clustering) to create a single TrackID set

Merge New TrackID set with the current merged TrackID set

Check all tracks and remove outliner hits

If len(track)>MaxLen – fix the track by removing it’s hits from the hit pool

 ML merging:

Do the clustering stage M times

Use ML to score every track

Every hit get the TrackID with the maximum score

 Extend tracks

Results

Number Of track

sets

Score Score after

extension

1000 0.51

1600 0.56

5500 0.636 0.73

100000 0.73 0.78

7 * 100000 (+ML) 0.78 0.804

Basic Clustering and Merging

Machine Learning

• 7 * 100000 +0.01

• 64 * 1000 0.51 0.78

Further Improvements

 Speed

 Feature Calculation

 Computing TrackID for 120,000 hits on single i5 core: 4mSec

 TrackID for 100,000*120,000 hits should take a few seconds on Tesla V100

 Merging

 The slow part in the algorithm – counting the number of hits per unique TrackID – in

python needs to use numpy.unique – O(Nlog(N)) [use sort]

 Can be O(N) => huge speed up (takes more memory)

 Hybrid solution:

 Can be used to create a large number of good short tracks fast, as the 1st stage in a

more accurate algorithm

 Use a corrected magnetic field – add 0.02 to the final score

Weaknesses

 Tracks that starts far from the origin are very hard to find

 We couldn’t find an improvement which would find such tracks

Thank You

