
Trian Xylouris

Yuval Reina

Sparse Binning Clustering

Enhanced by ML Track Scoring

Yuval Reina, Tel-Aviv Israel, Yuval.reina@gmail.com

Trian Xylouris, Frankfurt am Main Germany, t.xylouris@gmail.com

Team Name: Yuval & Trian

Private Leaderboard Score: 0.80414

Private Leaderboard Place: 7

Github : https://github.com/tx1985/kaggle-trackML

Kaggle Kernel : https://www.kaggle.com/yuval6967/7th-place-clustering-

extending-ml-merging-0-75

https://github.com/tx1985/kaggle-trackML
https://www.kaggle.com/yuval6967/7th-place-clustering-extending-ml-merging-0-75

Introduction

Main stages

 Clustering – using sparse binning

 Also include basic track merging and outliner filtering

 ML track merging

 Track extension

Clustering

Main Principle:

 For every hit, calculate N features.

 Try to find hits who's features are close enough

and give them the same TrackID

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial
Momentum

b) 𝑧0 ≅ initial position in the Z
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial
Momentum

b) 𝑧0 ≅ initial position in the Z
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope
𝜃 X

Y

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial
Momentum

b) 𝑧0 ≅ initial position in the Z
axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope

Z

𝜙

l

Features

Particle's Parameters

a) (px,py,pz) ≅ Particle Initial Momentum

b) 𝑧0 ≅ initial position in the Z axis

Helix Parametes

a) R ≅ Helix Radius

b) 𝜃 ≅ Tangential angle in XY plane

c) 𝜙 ≅ Slope

d) 𝜃 = arctan
𝑝𝑦

𝑝𝑥

e) 𝜙 = arctan
𝑝𝑧

𝑝𝑥2+𝑝𝑦2

Independent variables

I. 1/R

II. 𝑧0

Hit’s features

1. 𝜃− = arctan
𝑦

𝑥

2. 𝑟 = 𝑥2 + 𝑦2

3. Δ𝜃 = arcsin
𝑟

2𝑅

4. 𝜃 = 𝜃− + Δ𝜃

5. 𝜙_ = arctan
𝑧−𝑧0

2𝑅⋅Δ𝜃

Final features

1. sint = sin 𝜃

2. cost = cos 𝜃

3. 𝜙∗ = arctan
𝑧−𝑧0

10.3⋅Δ𝜃⋅𝑅

Binning

Clustering Binning

Sparse Uniform Binning

For features x,y in [-1,1]

ex , ey = rand([-0.5,0.5])

ID(x) = int(x*Num_bins/2+ex)

ID(x,y) = ID(x)*Num_bins+ID(y)

• Bins are spread uniformly

• Most bins are empty and there is a large distance

between non-empty bins

For a given set of independent variables

the track ID for every hit can be calculated independently

Track Merging/Selection

 A set of tracks is formed by randomly selecting Z0, R, Ex, Ey

 We count the number of hits with the same track ID

 When merging 2 sets of tracks, every hit gets the track ID which has

the largest number of members (and the number of members is

recalculated).

 Every N sets of tracks, the surviving tracks are refined, and long

enough tracks are permanently set:

 Refined – can’t have 2 hits with same detector ID, at most 2 hits can be from

the same layer.

 Permanently set – Hit’s belonging to these tracks are removed from the pool

ML – Track Merging/Selection

Choose Tracks according to a Good/Bad critiria using ML

 Extract features for every track:

 variance of x,y,z (these are the most important)

 minimum of x,y,z

 maximum of x,y,z

 mean of z

 volume_id of first hit

 number of clusters per track (i.e. are there many hits, which are close together?)

 number of hits divided by number of clusters

 Use LightGBM to score the tracks

 Training:

 Target = 1 - True tracks from the training set

 Target = 0 – False tracks created by the clustering algorithem

 Results ~ 95% for precision, accuracy and recall

Track Extension

 Sparse binning only clusters very “accurate” hits => Some of the track’s

hits are left out.

 In the track extension phase we try to extend a track by adding loose

hit’s which are close to the track.

 In practice we try to add hits from short tracks to long tracks

The Full Solution

 First Clustering Stage

For j in range(N):

For i in range(500):

Randomly choose 2 independent variables

Calculate TrackID for every hit (Clustering) to create a single TrackID set

Merge New TrackID set with the current merged TrackID set

Check all tracks and remove outliner hits

If len(track)>MaxLen – fix the track by removing it’s hits from the hit pool

 ML merging:

Do the clustering stage M times

Use ML to score every track

Every hit get the TrackID with the maximum score

 Extend tracks

Results

Number Of track

sets

Score Score after

extension

1000 0.51

1600 0.56

5500 0.636 0.73

100000 0.73 0.78

7 * 100000 (+ML) 0.78 0.804

Basic Clustering and Merging

Machine Learning

• 7 * 100000 +0.01

• 64 * 1000 0.51 0.78

Further Improvements

 Speed

 Feature Calculation

 Computing TrackID for 120,000 hits on single i5 core: 4mSec

 TrackID for 100,000*120,000 hits should take a few seconds on Tesla V100

 Merging

 The slow part in the algorithm – counting the number of hits per unique TrackID – in

python needs to use numpy.unique – O(Nlog(N)) [use sort]

 Can be O(N) => huge speed up (takes more memory)

 Hybrid solution:

 Can be used to create a large number of good short tracks fast, as the 1st stage in a

more accurate algorithm

 Use a corrected magnetic field – add 0.02 to the final score

Weaknesses

 Tracks that starts far from the origin are very hard to find

 We couldn’t find an improvement which would find such tracks

Thank You

