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Correlation != Causation

Deep Learning vs. Laws of Physics
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Feature Engineering... for people who don’t know physics :D

z (beam direction)

‘ Data we use: (X, v, z) coordinates of hits
Ty 2)
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‘ For clustering: sin(®), cos(®P), z/arc
(new feature: generate possible arcs using train data)
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Cartesian -> Polar coordinates: easier for LSTM to learn



Track Seeding

* DBSCAN clustering + outlier removal
* Seeds: first 5 hits of each found track
*  69% total seeds per event found within 1 min

* Seed quality: 85.8% perfect
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This can totally be replaced by CERN's superior seeding algorithm.....




Track Fitting — LSTM training

Train: 8300 events (limited on x, y, z > 0, track length >= 10, ~6.5% of total tracks)
Validation: 500 events

Test: 100 events

Input/Output: O, r, 2z, z/r
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Input shape: Zero out final 5 hits

(10, 4) Unroll through Time (mapped using sorted z positions)




Track Fitting — LSTM inference

X0 ~ X4 = seeds . .
X5 ~ X9 = zeroed out y0 ~ y9 = predicted 10 hits y5' ~y9' = fitted 5 hits
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Empirical Results (tf.keras)

 Over 100 test events - 63810 true tracks, 43820 seeded tracks in total

2015 Macbook Pro - Intel i7-4870HQ 2.5 GHz — erappy CPU only
e 2018 Dell 9570 - Intel i7-8750H 2.2 GHz - GTX 1050 Ti GPU
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Visualization after Fitting

--- predicted (grey)
--- ground truth (colour)
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Key Takeaways

o, constant features

* Easy for LSTM to learn constant features of a track

 Low inference time with data parallelization (batch) has its potential to tackle the
bottleneck

* Room for improvement
- Train different models with different types of tracks (low energy/curvy, irregular)
— Train models with tracks in all Cartesian dimensions + directions in cell data

- Replace K-nearest neighbour for Fitting 10

Our source code: https://github.com/jliamfinnie/kaggle-trackml
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