CERN TrackML accuracy Deep Learning Approach

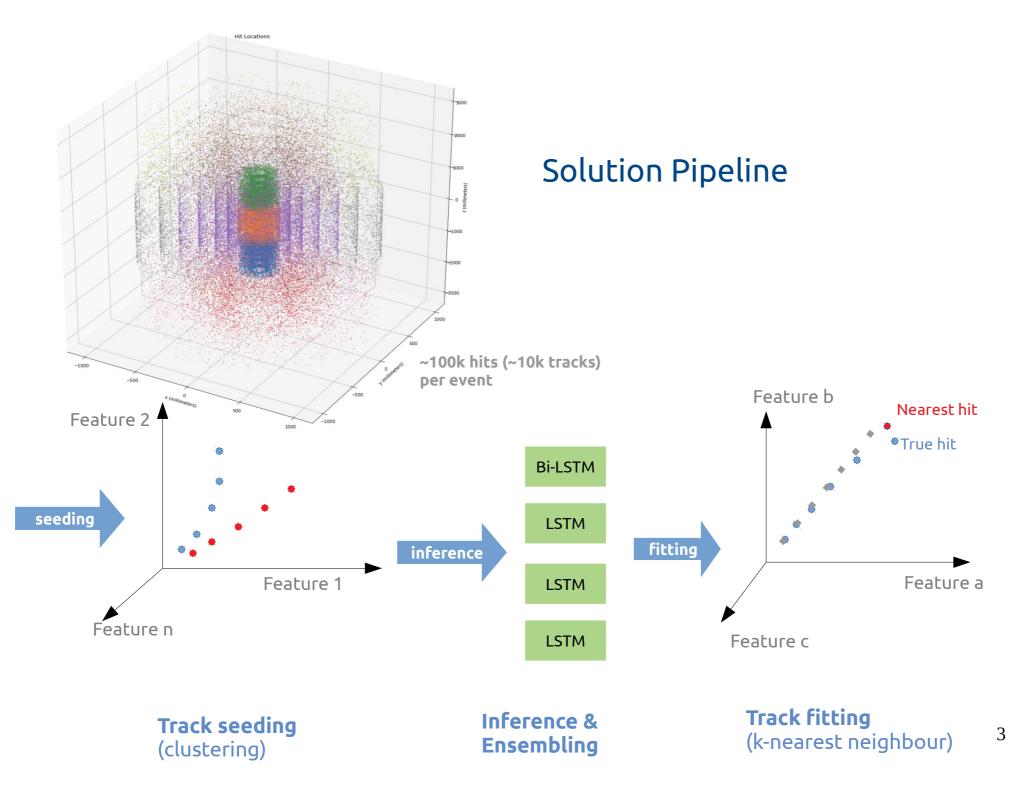
Liam Finnie & Nicole Finnie

IBM Germany R&D Bosch Centre for AI

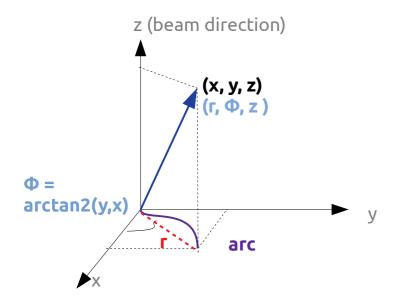
Jul 2nd, 2019

Correlation != Causation

Deep Learning vs. Laws of Physics



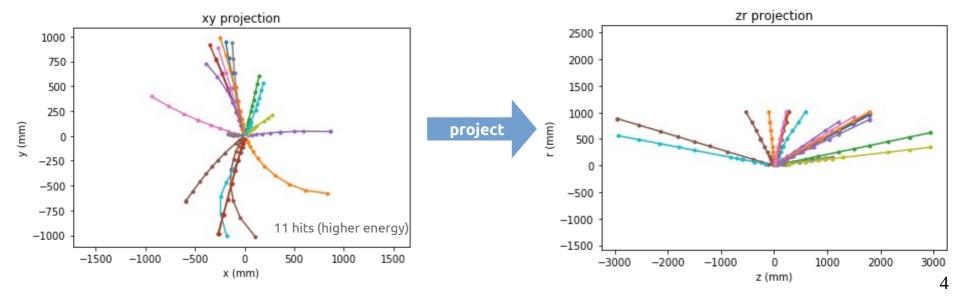
Feature Engineering... for people who don't know physics :D



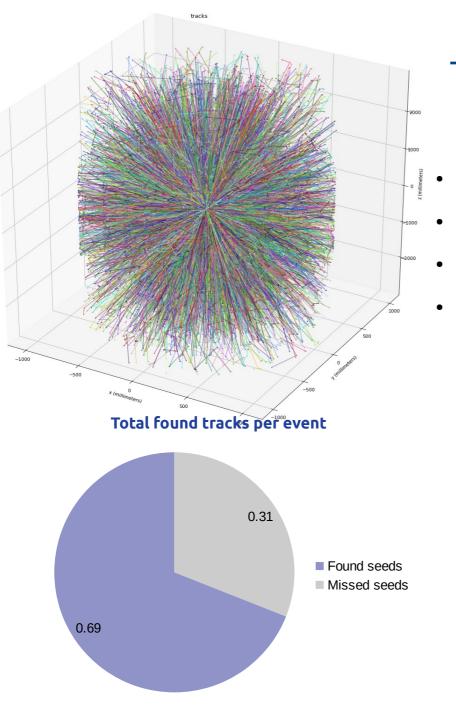
Data we use: (x, y, z) coordinates of hits

For clustering: $sin(\Phi)$, $cos(\Phi)$, z/arc (new feature: generate possible arcs using train data)

For LSTM: Φ, r, z, z/r

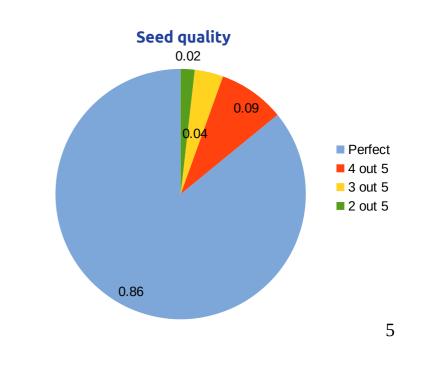


Cartesian -> Polar coordinates: easier for LSTM to learn



Track Seeding

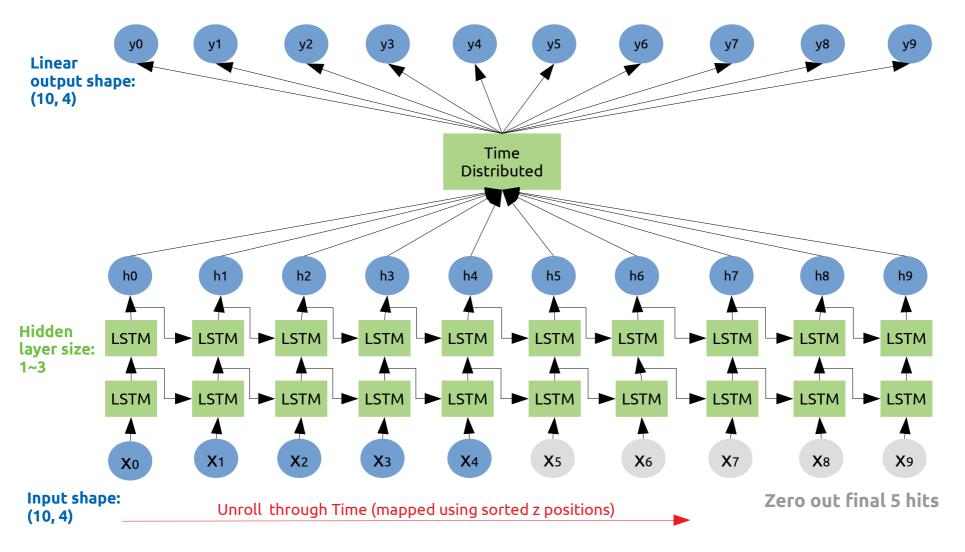
- DBSCAN clustering + outlier removal
- Seeds: first 5 hits of each found track
- 69% total seeds per event found within 1 min
- Seed quality: **85.8%** perfect



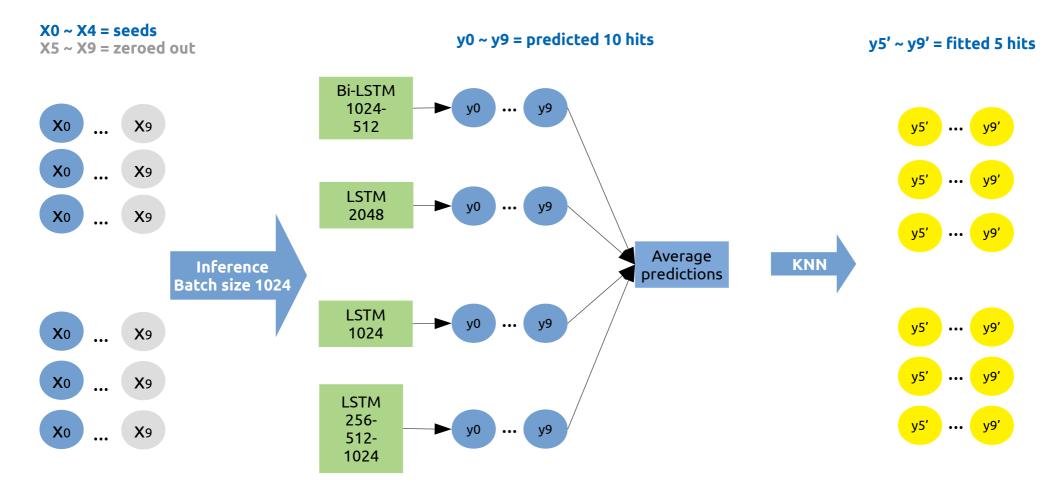
This can totally be replaced by CERN's superior seeding algorithm.....

Track Fitting – LSTM training

Train: 8300 events (limited on x, y, z > 0, track length >= 10, ~6.5% of total tracks) **Validation:** 500 events **Test:** 100 events **Input/Output**: Φ, r, z, z/r



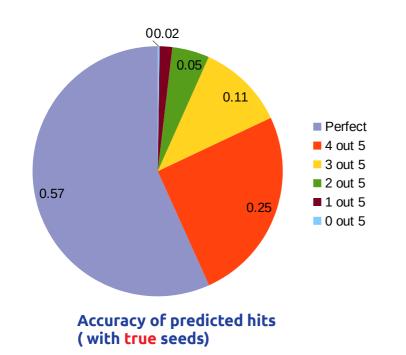
Track Fitting – LSTM inference

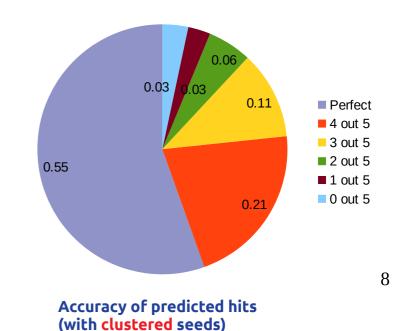


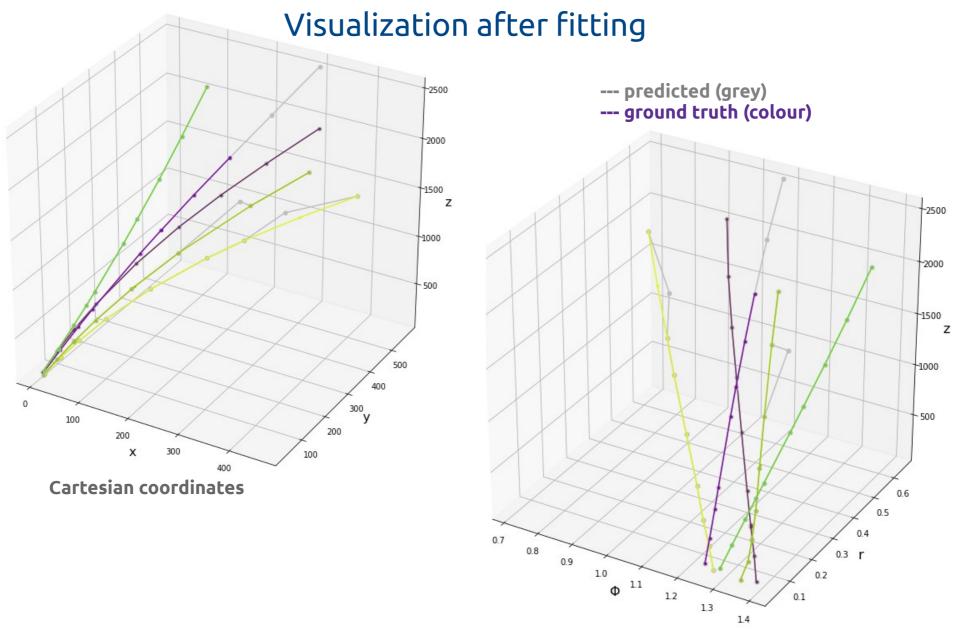
Empirical Results (tf.keras)

- Over 100 test events 63810 true tracks, 43820 seeded tracks in total
- 2015 Macbook Pro Intel i7-4870HQ 2.5 GHz crappy CPU only
- 2018 Dell 9570 Intel i7-8750H 2.2 GHz GTX 1050 Ti GPU

	Seeding	Bi-LSTM	LSTM 2048	LSTM 1024	LSTM-256- 512-1024	Fitting	Total
Average time per 10k tracks (s) - Mac	60 (per event)	49	42	12	21	8	192
Average time per 10k tracks (s) - Dell	30 (per event)	3	2	1	2	6	44 🙂

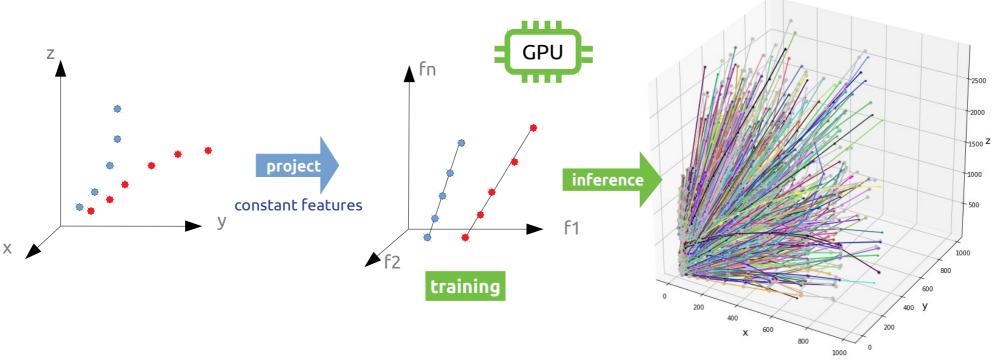






Polar coordinates

Key Takeaways



- Easy for LSTM to learn **constant features** of a track
- Low **inference time** with **data parallelization (batch)** has its potential to tackle the bottleneck
- Room for improvement
 - Train different models with different types of tracks (low energy/curvy, irregular)
 - Train models with tracks in all Cartesian dimensions + directions in cell data
 - Replace K-nearest neighbour for fitting

Our source code: https://github.com/jliamfinnie/kaggle-trackml