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Outline

» Forewords on tracking with ML
» Dataset and graph neural network models

> Results and outlooks
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Motivations

Current algorithms for tracking are highly
performant physics-wise and scale badly
computation-wise

Faster implementations are possible with
dedicated hardware

Turn to deep learning for new approaches

07/01/19
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Machine Learning for Tracking

y'w»‘ /4 iy
oo i
' Track Track$
Track m Track
- _

Zagoruyko et al, 1604.02135 Photo by Pier Marco Tacca/Getty Images

Many possible ways to cast the algorithm of
tracking, or part of the current algorithms in a
machine learning problem
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https://arxiv.org/pdf/1604.02135.pdf

HEP.TrkX Project

> Pilot project funded by DOE ASCR and COMP HEP
- Part of HEP CCE
> Mission
« Explore deep learning techniques for track formation

- People
« LBL : Paolo Calafiura, Steve Farrell, Mayur Mudigonda,
Prabhat
« FNAL : Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski,
Panagiotis Spentzouris, Aristeidis Tsaris
« Caltech : Dustin Anderson, Josh Bendavid, Pietro Perona,
Maria Spiropulu, Jean-Roch Vlimant, Stephan Zheng

‘ «k\;“" - ‘ | 5
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https://heptrkx.github.io/

Data Representation

07/01/19

BERKELEY LAB



Layer

Layer

Layer

Pixel

o Input data

'HEP.TrkX Approaches

. .- . -~ - Accuracy vs # of tracks
| " h‘ 1 | P _( prra('kl ’ ptrack.’ ’ ptru('k3 ’ ) 10
. Bl | HitProbs 1( 7)) || HitProbs2(77 | .. I ? ?
21560 —500 1! 500 1000 §09 /
e r . Z tmm] "g o8
Sl o * all hits in data
8 F- Qo7 target 0
6 f. g cand 0
a { D 06 target 1
2 I E o cand 1
21000 —500 o 500 1000 - A o -+= target 2
Model dicti S r—(f‘,Q),Z) f 04 #— cand 2
10 -oCel preciction - | HitPOS1(’_'.\) || HiTPOSZ(F:) | 10123456 78 9 10111213141516 17 1819 20 21 22 23 24 25 26 =+= target 3
. & ‘ Number of tracks || il cand 3
5 g N End-to-end hit assignment e ]
a II " —&— cand 4
= zimm - \. Seq-to-seq track finding
| | | |
Track following with RNN https://heptrkx.github.io/
. 1000 - od 1000{ 9P 0 0.9
nput  https://tinyurl.com/yb3v93yRdel prediction S
800 goo1  ® .. —e
40 40 L * . . .
T 600 T 6001 S

- E E @ . . —

3 400 001 o o s .

- o o o =
20 200 200 g gk .

D LSTM sl d Int t S — —
ense ][ H opes and Intercepts ] : = :__
10 conv- Layers 0 h T T T T T T T O 1 T T T T T T T
Dense || LsTM = Cov Viarx Paramerers] ~1000 -750 -500 [725(; 0 250 5(?0 -0.50 -0.25 0.00 ol.zsd] 050 075 1.00
) R https://tinyurl.com/y87saehf ¢!
0 10 20 30 40 0 10 20 30 40
Layer Layer

07/01/19

~
reeeerr

A
||||

BERKELEY LAB



https://tinyurl.com/y87saehf
https://tinyurl.com/yb3v93y9
https://heptrkx.github.io/

Charged Particle Tracking Dataset

& e RN 2 o OO » This work uses the public

‘ ' dataset of the TrackML
Particle Tracking Challenge
(Kaggle, codalab).

Prize Money

‘L;Qj;-‘g,? CERN - 656 teams' - a month-ago
Z—i

Overview Data Kernels Discussion Leaderboard Rules Team Host My Submissions

« * Simulating the dense
- N environment expected for
.. HLHLC. Average of 200
Timeline shseming thase caliorswithintrcatasiiean s SESSESSERSRRE A prOton'prOton interaction per
bunch crossing.

Prizes detectors.

While orchestrating the collisions and

About The Sponsors

observations is already a massive scientific
accomplishment, analyzing the enormous

amounts of data produced from the experiments f\rq-:l-:l)zlf sponsors

is becoming an overwhelming challenge.

Event rates have already reached hundreds of
millions of collisions per second, meaning physicists must sift through tens of petabytes of data per year. nVI DIA

And, as the resolution of detectors improve, ever better software is needed for real-time pre-processing
and filtering of the most promising events, producing even more data. UNIVE RSITE c
E o o A ' DE GENEVE B
https://www.kaggle.com/c/trackml-particle-identification DHTHIH - |RIS-HEP
https://competitions.codalab.org/competitions/20112 e Q -
CERN O PyTorch “erc

= openlab h”’m/-

7 INSTITUTE

R PARIS

o senuey
2= Fermilab @@@@@N@ .

N

~
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https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112

Tracker Hit Graph

Directed graph constructed
> One tracker hit per node
> Direct edge inside-out

07/01/19
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Edge Classification

i lVllmant

Grey edge:
Red edge :

fake
true

— b *
frrererrr III|
BERKELEY LAB ?
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Edge Classification with
Graph Neural Network

BERKELEY LAB
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Node & Edge Representations

TN E E S E S ESESEEEEEEEE S — — — — — — —

Latent Space

Output

Latent edge representation taken to be the classification score.
“attention” mechanism to the relevant edges.

07/01/19 12




Neural Networks

* Input Network
» Transforms from hit features (r,@ , z) to the node latent
representation (N for 8 to 128)
« Dense : 3—...—N

 Edge Network
> Predicts an edge weight from the node latent
representation at both ends
* Dense : N+N—...—1

* Node Network
> Predicts a node latent representation from the current
node representation, weighted sum of node latent
representation from incoming edge, and weighted sum
* Dense : N+N+N—...—N

07/01/19
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Edge Network

BERKELEY LAB
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Node Network

— NodeNet(© @O+ @ +0@+ )
self Incoming outgoing

07/01/19 15
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Information Flow

» Graph is sparsely connected from layer to layer
 InputNet + EdgeNet + NodeNet only correlates hits
information on triplet of layers
» The information from the outer hits and inner hits are
not combined

> Correlates hits information through multiple (7) iterations of
(EdgeNet+NodeNet)

> Implemented in Torch
https://github.com/HEPTrkX/heptrkx-gnn-tracking

m_. e | (B oo | EEgoRR]—osones | - - - ] _,l [ l

SAASTAL S "‘ s = ) / N B BB roeocoroor ‘ |
07/01/19 4 16
- & 4 ol
_L,Vf e :‘7-:1‘1- :-, . L
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https://github.com/HEPTrkX/heptrkx-gnn-tracking

Node & Edge Representations

TN E E S E S ESESEEEEEEEE S — — — — — — —

Latent Space

Output

Edge representation is not the edge score.
Final edge score extracted from the latent edge representation.

07/01/19 17




Message Passing Model

[Ho, Ho]

Input
— | Network

—_

[H1, Hoj
Graph Graph
Network 7| Network | """

« Same graph connectivity

* No explicit attention mechanism
« Edge representation computed from end-nodes features

[Hi]

Output
Network

* Node representation computed from the sum over all

connected edges

111

> Correlates hits information through multiple (8) iterations
of (Graph Network)
> Uses https://github.com/deepmind/graph_nets TF library

07/01/19

¢ RS

BERKELEY LAB

18


https://github.com/deepmind/graph_nets
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04 06
Model output

Information Flow

« Checking edge score
after each step of
graph network.

 Effective output of the
model is in step 8.

 Full track hit
assignment learned in
last stages of the
model.

* Tracklets learned in
iIntermediate stages.

/;\Ilﬁ
frrereerer
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Problem Size
Considerations

BERKELEY LAB
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Dealing with Large Graphs

» Full event embedding
~ A graph with ~120k nodes (14.4B edges) and ~1M
potential edges
~ Very large graph

 Split the problem

- currently using 8/16 sectors in ¢
* |dentify disjoint sub-graphs

- Geometrical cuts, segment pre-classifier, ...
* Implement distributed learning of large graphs

» Scope of the Exa.TrkX Project

07/01/19
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Performance

one-event N-particles  ratiow.rtTotal o "MOWE! relative ratio -
Total 11170 100% o F“’/
Reconstructable JIEIoX15 86% 100% 86%
Barrel 7492 67% 78% 8% §
No-missing hits S e ¢ 59% 69% 88%
Edge selection [IEECSRP 28% 329% a7% ¢ / = s
Split graph R 24% 28% 86% || E gslg"t"clp“‘ht“
GNN 2590 239% 27% 97% G+ D

0.5 1.0 15 2.0 25 3.0 35
pT [GeV]

» Tracks formed with a simple algorithms that traverse the hit
graph over high-score edges.

> Promising performance, once passed acceptance cut for
training purpose (to be solved)

> Further details in Xiangyang talk at Connecting the Dots 2019
https://indico.cern.ch/event/742793/contributions/3274328/

< e) ::ﬁ |ﬁ| * ’
BERKELEY LAB ?
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https://indico.cern.ch/event/742793/contributions/3274328/

07/01/19

Summary and Outlook

« Graphs is the most nature data
representation we could come across.

* Promising performance of graph networks at
doing pattern recognition of tracks.

» Finalizing end-to-end solutions.

* Multiple ways to improve the model ; also
using domain knowledge.

« Computationally intensive task that requires
further work on scaling.

23



Extra material
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Hits associated to foupd tracks only. ‘ / y Pa rtl CI e traJ eCtO ry be n d ed | n a

At least as many pre-filtered or not associated

solenoid magnetic field

e Curvature is a proxy to
momentum

« Particle ionize silicon pixel |
and strip throughout L g
several concentric layers 3;4 AN

« Thousands of sparse hits,
* Lots of hit pollution from low % ‘e ;,gxé%e@
momentum, secondary particles ,L@o;;‘jw‘
Seeding Kalman Filter
( — O e el e — h (_. P P S —
@ el emnlp— —r—r— e e e e
— o~ .~ — —. T 7 35—
— e e Qe e —. ———0—0 O
— i s —— = =
O e ) e e e ~ e
o d B

-

« Explosion of hit combinatorics in both seeding and stepping attern recognition
 Highly time consuming task In extractlng phyS|cs content from LHC data

. Lv‘ 3 /// / | ’ | , § I/h
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Complexity and Ambiguity

i, egtewmt
Ry

I S

w

- 4 p -
e v ~ & . 4 -

? .‘_..-:"-.,-""'. ay'| (TR R ol 3 ; ="
__~Shown trajectories are reconstructed objects
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High Luminosity LHC
The Challenge
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Cost of Tracking

 CPU time consumption in HL-LHC era surpasses computing budget
> Need for faster algorithms
« Charged particle track reconstruction is one of the most CPU consuming
task in event reconstruction
> Optimizations mostly saturated
 Large fraction of CPU required in the HLT. Cannot perform tracking

inclusively
> Approximation possible in the trigger
— - = '6'100""l""[""l'"'l""I""I""l""l""— = "":'
g CMS Simulation, ys = 13 TeV, it + PU, BX=25ns i T Reconstruction in rel. 21.0.37: E ] =
= o —=— Full Reco Current—=— Track Reco Current | = 90 = 3
g - Full Reco Run1 Track Reco Run1 ] ¢ go = 38
w b ] > 40 g 10° -=
D - PU140 | D - high-mu run 335302 (2 051 jobs) 1 3
— - . = produced only single (AOD) output = =
40} { § 60 " —E - .
: 1V E
%0 . E
- ] "= II E
200 38 10
10— ; L3
B -’ ATLAS Prellmlnary—
T e T T N T T T T T e v B i =
Y 0 20 30 40 50 60 70 80 90 100 1

<u>

07/01/19 “ | - o @) rf:>| .ﬁ| * 2
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Fast Hardware Tracking

Track trigger implementation for Trigger
upgrades development on-going

Several approaches investigated

Dedicated hardware is the key to fast
computation.

Not applicable for offline processing unless
through adopting heterogeneous computing.

memories
processing modules”

[CRNC] e Ies e B Leis@las)
== 8 o8 © [=—aj}
= ER= - Rt = ]
= = E Sema (A BT R _En
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— S\ e S R\ | [ e W e Il o W
2 q ols =
alman Filterin MaxJ:.
& (&) — 12
“~@@mm & @S
p SO e
/ (ele]-] R @
| ® Qe
55 clock
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8 processing + 2 transmission steps implements algorithm

)

\ —
= == a\
=W
STUB =\ TRACK
il §J\\ ouTPUT
=i
=4
~ —
’l/’ ! 1
R i
™ /' - ——— —
| | J 1 JII \ | |1 ‘|
W 7 %. P —— %ﬁ & L\ig -
Stub Forming Projection Organize Match tracklet Match ~ Track
organization tracklets transmission tracklet projections to trans-  fit
to neighbors  projections stubs mission

Firmware Implementation - Bin

Each bin represents a 9/,, column in the HT
array

Transform:

stubs — [ g stubs
& s s gsg at left boundary
' Hough ulates ¢ at right boundary
Transform :
S r
bs \ o uplicates stubs if it belongs to two cells.
| I are— N

Track Builder:
Sorts stubs in ¢sg cells.

Marks ¢=g cells with stubs in at least 4/5
layers.

+ Hand Shake:
Controls recd-out of candidates

::ﬁ |ﬁ| * 30

Buffer

siep 3)
L P

Shake

track candidates — |_ &P 2) track candidates —

BERKELEY LAB



Recall & Precision

True Positive

. True Positive m—
Precision = or = — R | )
Actual Results True Positive + False Positive True False
s Positive Positive
o
True Positive True Positive o]
Recall - or = - e
Predicted Results True Positive + False Negative a Tis
legative Negative
A True Positive + True Negative
ccuracy =
Total Actual

Precision = Efficiency
Recall = Purity = 1-(Fake rate)
Accuracy = How much do we get it right

07/01/19
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Downgraded Complexity

* TrackML dataset generated from ... with an
average of 200 pileup events.

10°

« Not computational possible at this time to .
embed the smallest relevant sector of full 10°
event on a graph o

10!

> Sub-dataset are constructed by

10°

> Low denSity -400 -200 O 200 400
. p;>1 GeV, Ap<0.001, Az,<200mm —
v acceptance: 99%, purity: 33% :

> Medium density 10°

« p;>500 MeV, Ap<0.0006, Az <150mm

v acceptance: 95%, purity: 25%
> High density

« p;>100 MeV, Ap<0.0006, Az <100mm

> acceptance: 43%, purity: 9% w002 oo awo
V ST, (\ )

10!

07/01/19
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10° 1

10° 1

10* 1

10° 1

00

Low density
acc. x eff. ~97%

02 04 06
Model output
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08

10

Performance

10°

10° ;

10° 1

107 §

10" -

. fake
N frue

Medium density
acc x eff. ~90%

00 02 04 06 08 10
Model output

10° 1

10° 1

10* 4

10° 4

~

' A
(reeeee "'|

BERKELEY LAB

High density
acc. x eff. ~33%

0.0 02 04 06 08 10
Model output

L
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Summary

* Pilot project to explore new ideas for
charged particle track reconstruction

» Graph neural network show promising
results even in increasingly dense event

* Post-processing, pre-processing, using
domain knowledge, ... : work in progress

» Optimizing such models requires training at
scale : issues to be tackled, stay tuned

07/01/19 34
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The Case for
Machine Learning

BERKELEY LAB
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Computational Aspect

O
b Wi2

e
O3

ANN = matrix operations = parallelizable

_—

02

—_—

Co-processing kernel

his 4 ml

Hl'S H /
conversion Custom firmware
design

Usual machine learning jr

software workflow

tune configuration

precision
reuse/pipeline

Synthesis FPGA firmware

11 i (Wi X i3] + (w51 X 1) from trained ANN

M2 [1 = |2 X f) 4 (w2p X Ep) https://hls-f hine-learning.github.io/hls4ml/

Wy4 (WrsX i)+ (Wos X i) ps://hls-fpga-machine-learning.github.io/hls4m
/L

-

.

Bonsai BDT, contained tree growth and
feature discretization ; fast classification
https://arxiv.org/abs/1210.6861

J

« Computation for machine learning prediction from a
tralned model IS parallel andcan be fast

<
A
rececore]|"
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https://arxiv.org/abs/1210.6861
https://hls-fpga-machine-learning.github.io/hls4ml/

Learning from Complexity

55 — -
27
13 13 13

N
1 9 a1l
N L < -
R 5 - == N 3 — = _— . N
IN - = T~ 13 ~ T\ |13 3 — % |13 dense | [dense
224 5 -~ 27 4+ 3 ~
3 3 -
- 384 384 256
256 Max‘
Max Max pooling
Stride\| o | Po°ling pooling
224
of 4
e it AR O Numerical Data-driven
T A
- " o

91qe) Suruurp

210)s A192013

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fc8: Object Classes

* Machine learning can extract useful information from complex

underlying data structure
 Classical algorithm counter part may take years of development

07/01/19
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Pattern Recognition With
Deep Learning
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Machine Learning for Tracking

y'w»‘ /4 iy
oo i
' Track Track$
Track m Track
- _

Zagoruyko et al, 1604.02135 Photo by Pier Marco Tacca/Getty Images

Many possible ways to cast the algorithm of
tracking, or part of the current algorithms in a
machine learning problem

_— 5"“'\\ ‘:‘NTO“(% \ | / -~ A
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https://arxiv.org/pdf/1604.02135.pdf

Similarities and Challenges

 Particle tracking is an active field in data science
- Different type of particles
> Not oriented to code performance
« Making a track is a pattern recognition problem
> Not the usual one in data science
» Tracking data is much sparser than regular images
~ Test and adapt methods
* Tracking device may have up to 10M of channels
- Scale up deep learning models
- Perform tracking by sector
« Underlying geometry of sensor more complex
> More than a simple picture
> Barrels and end-caps are not the usual pictures
* Not the regular type of sequences
- Cover new ground of sequence processing
» Defining an adequate cost function
> Tracking algorithms are optimized by proxy
A solution must be performant during inference ...

NT X N 4

POIENTr y / e >

- N / . N Ay
1 :g. 2\ / P /A
£ Y : I &) mn
B B ) ) ¥ @ (reeeer

X {50 / 5
>
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HL-LHC Challenge

<PU>=140-200
10x more hits
Circa 2025

« CPU time extrapolation into HL-LHC era far surpasses growth in
computing budget

* Need for faster algorithms

« Approximation allowed in the trigger

07/01/19
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Scene Labeling

sheepfiacel

sheeph(sheepiheet scc P s {shcep sheep
F=pEeF i & sheepg i
PR e e Ehee g e {onee o p SIS she L= Peepl s ee)

From talk of LeCunn at CERN

N
Y‘F 42
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Scene Labeling

07/01/19

Farabet et al. ICML 2012, PAMI 2013

> Assign hits to track candidates

oS %oN ‘ | — p *
7)  HEP,TrkX <Q cocee) =

J.-R. lVl]mant BERKELEY LAB
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Scene Captioning

1.12 woman
-0.28 in
PREVIOUS F2T5 TR R BRI
1.45 dress
0.06 standing
-0.13 with
3.58 tennis
1.81 racket
0.06 two
0.05 people
-0.14 in

0.30 green
-0.09 behind
-0.14 her

Karpathy, Fei-Fei, CVPR 2015

> Compose tracks explanation from image

07/01/19 5. A7) /] HEP/T 0 rfrﬁ |
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Text Translation

# [Sutskever et al. NIPS 2014]
» Multiple layers of very large LSTM recurrent modules
» English sentence is read in and encoded
» French sentence is produced after the end of the English sentence
» Accuracy is very close to state of the art.

Ceci est une phrase en anglais

This is a sentence in English

> From sequence of hits on layer to sequence of hits on track

BERKELEY LAB




Possible Application to Tracking

* Track candidate
> Finding the hits that belong to a track
> Seed + hits — tracks

* Track parameters
> Measuring the physic quantity of tracks
> Hits — track kinematics

* Seeding
> Putting together hits into tracks
> Hits — track

07/01/19
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Layer

Layer

Layer

Pixel

o Input data

'HEP.TrkX Approaches

. .- . -~ - Accuracy vs # of tracks
| " h‘ 1 | P _( prra('kl ’ ptrack.’ ’ ptru('k3 ’ ) 10
. Bl | HitProbs 1( 7)) || HitProbs2(77 | .. I ? ?
21560 —500 1! 500 1000 §09 /
e r . Z tmm] "g o8
Sl o * all hits in data
8 F- Qo7 target 0
6 f. g cand 0
a { D 06 target 1
2 I E o cand 1
21000 —500 o 500 1000 - A o -+= target 2
Model dicti S r—(f‘,Q),Z) f 04 #— cand 2
10 -oCel preciction - | HitPOS1(’_'.\) || HiTPOSZ(F:) | 10123456 78 9 10111213141516 17 1819 20 21 22 23 24 25 26 =+= target 3
. & ‘ Number of tracks || il cand 3
5 g N End-to-end hit assignment e ]
a II " —&— cand 4
= zimm - \. Seq-to-seq track finding
| | | |
Track following with RNN https://heptrkx.github.io/
. 1000 - od 1000{ 9P 0 0.9
nput  https://tinyurl.com/yb3v93yRdel prediction S
800 goo1  ® .. —e
40 40 L * . . .
T 600 T 6001 S

- E E @ . . —

3 400 001 o o s .

- o o o =
20 200 200 g gk .

D LSTM sl d Int t S — —
ense ][ H opes and Intercepts ] : = :__
10 conv- Layers 0 h T T T T T T T O 1 T T T T T T T
Dense || LsTM = Cov Viarx Paramerers] ~1000 -750 -500 [725(; 0 250 5(?0 -0.50 -0.25 0.00 ol.zsd] 050 075 1.00
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Layer Layer
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https://tinyurl.com/y87saehf
https://tinyurl.com/yb3v93y9
https://heptrkx.github.io/

Seeded Track Candidate Making

07/01/19
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Seeded Pattern Prediction

 Hits on first 3 layers are used as seed
 Predict the position of the rest of the hits on all layers

Seed hits

Try to
reconstruct
this track

Pixel

07/01/19
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Long Short Term Memory - LSTM

Breakthrough in sequence processing by carrying over
an internal state, “memory” of the previous items in the
sequence, allowing for long range correlation

> ) GifD

T A
s h 4 h 4 R
— (X ® > —»
CGanh>
A | ) -t A
I?II?IItalnhlljfl
—p — —»
\__ J 'le y |9 Y,

“ ::}luﬁ * 50
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM = Kalman Filter

Output detector layer
predictions

Target track

0

softmax activations

Input detector layer
arrays

Target track

~

07/01/19 2. ) (7 )] HEP/Tr [} ’ﬁ |
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Seeded Pattern Recognition Insights

* For a simplified track models,
predicting the track pattern from the
seed works

> In 2D and 3D
> With some level of noise
- With other tracks present -
- On layers with increasing number s -
of pixels . Hit Classification accurac v
NN . Uses best hit pixel
« Several other architectures tried - N S
> Convolutional neural nets e
(no LSTM) .
- Convolutional auto-encoder V[ v
> Bi-directional LSTM e S
> Prediction on next layer with LSTM ol - SL

07/01/19
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Tracking RAMP at CtD

S. Farrell : Best solution in the Machine Learning category
https://indico.cern.ch/event/577003/contributions/2509988/

* Increased granularity in “road”
 LSTM for hit assignment
" « 95% efficiency

LSTM for hit assignment
92% efficiency
Robust to holes and missing hits
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Finding Tracks with LSTM

LSTM = Kalman Filter ,, Input data

Output detector layer
predictions

0 1 2 8 E
softmax activations’ T I ’ I , T

-~

o L] I o @
—

-C ) FC FC
=1000 =500 0 500
Z [mm)])
o Ground truth

0 1 2 3
Input detector layer
@

arrays
Target track

» Search seeded from a

known tracklet

> Hit location Is discretized to 8 -
fixed length 5
> Model predicts the binned 3

1000
B
6 I
5. ’
2 I'I
—01000 =500 0 500 1000
Model prediction
9 |
6 I
4 '
2 If
-01000 -500 0 500 1000

position of the hit on the

next layer

T prianp 3

g & WENT O 1N y y ///,,// N \
07/01/19 e\ ) @r A

limant
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Hit Prediction with Gaussian Model
70, 71, - - -, TN — 11> ST JFEI {7, 31), (7, 5), ..., (Fx, Bw),

~ - 2 2
'F’: (T, ¢) Z) 'r_": (¢’ 2) Y = (;g: 0(-;522)
Loss function incorporates the position and

the predicted uncertainty
L(z,y) = log|Z| + (y — f(2))"Z 7' (y — f(x))

- Search seeded from a $ ol ditriution
known tracklet e e :
- Hit positions taken in .
sequential input .

> Model predicts the
position of the hit on the
next layer

0.05 1

07/01/19
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Track Parameters Measurement

07/01/19
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Track Parameter Estimation

Input

Try to predict the

slope and intersect
of this track

Pixel

07/01/19

~ st
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Multi-Track Prediction with LSTM

* Hit pattern from multiple track
processed through convolutional
layers "

Conv (3x3) x32

.Qp,n_v, (3x3) x32
[ e |

Dense (400)

LSTM (400)

Jl

Slope 1 Slope 2 | Slope 3

 LSTM Cell runs for as many
tracks the model can predict.

Intercept 1 Intercept 2 Intercept 3

B .
BERKELEY LAB v
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Predicting Covariance Matrix

[Dense LSTM I—PI Slopes and Intercepts I
-P[Conv,. Layers
Dense LSTM]—>[90.V. Matrix ParameterE]

e The observed hit pattern from multiple track
processed through convolutional layers

* LSTM cells are ran multiple time in order to predict
a list of particles

* Model is able to predict the covariance matrix of
track parameters, incorporated in the loss function

L(z,y) =log|Z| + (y — f(x) =" (y — f(x))

07/01/19
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Track Parameter Prediction

Pixel

Hit pattern in
the detector

Input

07/01/19

J.-R. Vlimant

Track parameters and

corresponding
uncertainties

Model prediction

raphical representation of track slope

J
intersect and respective uncertainties
10

40

~\

f(rreeee
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Hit Assignment Approaches
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Pattern Recognition

Try to assemble
P .. hits into track
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seq-2-se( tracking

 Input sequence of hits per layers (one sequence per layer)
> One LSTM cell per layer
» Output sequence of hits per candidates
> Final LSTM runs for as many candidates the model can predict

* all hits in data
target O
cand 0
target 1
cand 1

+= target 2

& cand ?

-+= target 3
-8 cand 3
-+= target 4
—&— cand 4

+ Restricted to 4 layers
~ (with seeding in mind)
"« Full performance
evaluation still to be done

B .
BERKELEY LAB v
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Hit Assignment Algorithm

.

P :( Ptrackl » Ptrack2 » Prack3 » )
HitProbs1( 7,) || HitProbs2(7>) | . ..

Accuracy vs # of tracks

= =l it
o duﬁ .. |

o
P

vvvvvvvvvvvvvvvvvvvvvvvvvvv

-1 0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of tracks

» Unseeded hit-to-track assignment (clustering)
> Hit positions taken in sequential input
> Model predicts the probability that a hit belongs

to a track candidate
CEldE -
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Vertexing

07/01/19
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Vertexing with CNN

Input of the model represented as a RGB picture

w
w
=

450

binned z coordinate of hits
w
=

8

w
wu
=

40 60 80
binned ¢ coordinate of hits

> Using hits binned (n, ¢) map in
input for a regression of the
primary vertex position

> Modest success

07/01/19

confidence

(-]
B

1.0

08

o
o

0.2

0.0

Finding the primary vertex - position predicted by the model _

« truth
+*« prediction

(5]

50

100
binned beam-line (z axis)

Finding the primary vertex - minimum confidence of 0.30

150 200

1.0
0.8
0.6
2
(=]
"
w
0.4
0.2 e -+ Accuracy over covered events
I Accuracy
BN Error
Il Not covered

10 15
uncertainty [mm]

<
A
(reeeee "'|
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Graph Networks Approach

67



Seeded Hit Classification with GNN

. ROC curve
> Seeded hit rof
classification e
. e
- Model predicts
whether hits belong :
to the given seed  *
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
1000 od 1000{ O 9 by 2
800 - 800 L .. —e
» . . - .
T 600 T 600+ o
% _E_ - e @ - e
400 - 400 e e <l
- . ‘0 e
200 4 2001 g .""_;_. —e
: —_— .
- |
0 T T s ) T T T 0 T T T T — —_.
-1000 -750 =500 -250 O 250 500 ~0.50 -0.25 000 025 050 075 1.00
z [mm]) ¢ [rad]

B .
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Track Building With GNN

Segment classifier architecture
DH_, o] Y [ [ - - - | _,l [ l

With each iteration, the model propagates information
through the graph, strengthens important connections,
and weakens useless ones.

> Unseeded hit-pair classification
> Model predicts the probability that a hit-pair is valid

o o e o | 900 I LN L o o
(] o o 800 4 L] o o L]

/
7
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ge00 oo 9 § ¢
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N °
geee 0o 80 § 3
o000 o

~{ 0000 © @

' : p p b
3 1 ¢
0 o 4 1 3 3 3 2 -1 1 53 L 4 0 ] 2
¢ [rad] ¢ [ d] ¢ [ d] ¢ [rad]

Successive |terat|ons on a selected event

See our poster on Track 6 for more details
https /lindico.cern. ch/event/587955/contr|butlons/2937570/

B .
BERKELEY LAB ¥
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Hardware Consideration

07/01/19
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Inference on FPGA

 Demo at NIPS 2017 of implementing neural
networks on FPGA

 Collaborating with his4ml team to push the
graph neural networks models to the nexts level

Keras
TensorFlow

PyTorch

< ——" hls 4 ml

compressed
model e © HLS : —
conversion Custom firmware

. . design
Usual machine learning 9

software workflow ‘!f
\tune configuration /
precision
reuse/pipeline

See Jennifer's talk during this event
https //indico.cern. ch/event/587955/contr|butlons/2937529/

e) r:r—:}luﬁ * 71
BERKELEY LAB ?

Co-processing kernel
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Tracking Not In a Nutshell

* Hits preparation
* Seeding
* Pattern recognition

* Track fitting

Several Times

* Track cleaning

07/01/19
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Hit Preparation

pixel detector strip detector o

Tmasaling

using beam spot
assumption

Calculate the hit position from barycenter of charg
d epOS |tS first NN output

Ilﬁp‘_(.\’a‘_} 0168 pN=2):0.820  pN>2): 0.203

Use of neural net classifier to split cluster in ATLAS

Local x [rrmi]
T
=
Charge [ke]

&
1

Access to trajectory local parameter from cluster
shape

-

=
=

Remove hits from previous tracking iterations My

J34
Local y [mm

HL-LHC design include double layers giving more SanpischensaRepit
constraints on the local trajectory parameters

~

1.5€
Y‘F 73
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Seeding

~

-

07/01/19

= ENT Op
g ENT Op & )
7 "‘.\‘
I~/ =\ -
Bl 5
) &
e
RS J.-R.

limant

 Combinatorics of 2 or 3 hits
with tight/loose constraints
to the beam spot or vertex

« Seed cleaning/purity plays
In an important in reducing
the CPU requirements of
sub-sequent steps
> Consider pixel cluster

shape and charge to
remove incompatible
seeds

* Initial track parameters from
helix fit

/—s\ll/l\l
rrrrrrr
H 74
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Pattern Recognition

« Use of the Kalman filter
formalism with weight matrix

* |[dentify possible next layers
4 N from geometrical considerations

« Combinatorics with compatibles
hits, retain N best candidates

* No smoothing procedure

* Resilient to missing modules

 Hits are mostly belonging to one
track and one track only

 Hit sharing can happen in dense
events, in the innermost part

| — g < ENT Op / /,/ ‘ )
. £ Y \ / = A
g SAASTAL [ ] é" ‘ B = L /Trkx *i . sl f>| U
A SO

J.-R, Vlimant BERKELEY LAB




Kalman Filter

 Trajectory state propagation
done either
v Analytical (helix, fastest)
» Stepping helix (fast)
4 Y\ v Runge-Kutta (slow)
Ky = CopiHy," (Vi + HiCop (H,) « Material effect added to
trajectory state covariance
* Projection matrix of local helix
parameters onto module surface
> Trivial expression due to local
helix parametrisation

Pux = Prg-1+ Ky (my — Hpppp—q)
Ck|k—] = -KH k)Ck|k—1

H |, is the projection matrix

V'} is the hit covariance matrix  Hits covariance matrix for pixel
P;j is the trajectory state at i given j and stereo hits properly formed
C ilj is the trajectory state covariance matrix ati givenj | * ISSU_e W'_th St”p hits .and
\ / longitudinal error being non

gaussian (square)

07/01/19 ~-H v 76
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Track Fitting

e Use of the Kalman filter
formalism with weight
- ~  Mmatrix

» Use of smoothing
procedure to identify
outliers

Particle’ s parameters
(q{p;lambda}lphi,do,d;jl

 Field non uniformity are
taken into account

. /» Detector alignment
taken into account

e) rreeeer "I
C BERKELEY LAB ? 77
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Cleaning, Selection

* Track quality
estimated using
g \ ranking or
classification method
>Use of MVA

 Hits from high quality
tracks are remove
for the next iterations
where applicable

s - D ENT O Y
b . £ .‘;S:\\ ENT O ‘ | // y / /2\|
SAASTAL Q e\ . i M
5 1 HEP/ TrkX K&/ rrrreer ‘ |
07/01/19 | () > .
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A Charged Particle
Journey

BERKELEY LAB
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First order effect : electromagnetic elastic
interaction of the charge particle with nuclei (heavy
and multiply charged) and electrons (light and
single charged)

Second order effect : inelastic interaction with
nuclel.

07/01/19
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Magnetic Field

» Magnetic fieldB acts on charged particles
iIn motion : Lorentz Force

e The solution in uniform magnetic field is
“Z an helix along the field : 5 parameters

* Helix radius proportional to the component
of momentum perpendicular to B

e Separate particles in dense environment

A% »> Bending induces radiation :
X " bremsstrahlung

> The magnetic field has to be known to a
good precision for accurate tracking of
particle

07/01/19
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Multiple Scattering

» Deflection on nuclei (effect from
v electron are negligible)

.’“C;Iosest
.~ approach

M L « Addition of scattering processes

« Gaussian approximation valid for
substantial material traversed

Gaussian Approximation

‘ g _(13.6Mel ), x
pep X

Y

0

e \ B -particle velocity
p — material density
P - particle momenta

< “ ::}l |ﬁ| * %
BERKELEY LAB #
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Bremsstrahlung

» Electromagnetic radiation of
3 charged particles under acceleration
o~y due to nuclei charge

 Significant at low mass or high
energy

+  Discontinuity in energy loss
g spectrum due to photon emission
'. and track curvature

| > Can be observed as kink in the

v trajectory or presence of collinear
energetic photons

N £ I J.-R. Vlimant BERKELEY LAB




Energy Loss

e Momentum transfer to electrons when
traversing material (effect of nuclei is
negligible

., * Energy loss at low momentum
dE | dx =k, z 12 [h{w} ik _5] depends on mass : can be used as
AP 1(1=47) mass spectrometer

B -particle velocity

p — material density

Z - atomic number of absorber
A — mass number of absorber

I — mean excitation energy

d — density effect correction factor — material
dependent and B dependent

dE/dx in TPC (arb. units)

Il‘!-2 -1 0 1‘”;'—_’LIIL
ALICE Experiment pz (Gev/o)
ey JC
[) el o4
BERKELEY LAB ?
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Summary on Material Effects

* Collective effects can be estimated
statistically and taken into account in how they
modify the trajectory

* Bremstrahlung and nuclear interactions
significantly distort trajectories

07/01/19
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