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Release timeline
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Tentative release timeline for OpenData detector

July/Aug 2019

Consolidation of
detector & simulation

Dataset production:
Geant4 simulation  

(small statistics validation sample) 

ACTS-Fatras simulation  
(large statistics sample) 

Sep 2019

Let’s assume we are here
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Part 1 Expanding the experimental scope
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Evolving the Tracking detector
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Future tracking detector technologies 
- a full timing tracking detector to deal with higher pile-up

ch0

ch1

very fast detectors 
could provide 

time measurement

time

Geant4/ACTS simulation can provide this
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Evolving the Tracking detector
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Future tracking detector technologies 
- a full timing tracking detector to deal with higher pile-up

Precision Timing with the CMS MIP Timing Detector A. D. Benaglia for the CMS Collaboration

1. Introduction: the need for precision timing at HL-LHC

In the high luminosity phase of LHC (HL-LHC) [1], expected to start in 2026, the accelerator
will operate at a stable luminosity of L = 5 ·1034 cm�2 s�1 with 140 simultaneous interactions per
bunch crossing (pileup), with an ultimate scenario given by L = 7.5 ·1034 cm�2 s�1 and 200 pileup
events. These operating conditions correspond to an increase of a factor of about 4�5, compared
to current LHC. The interactions will occur within an RMS spread of approximately 5cm in space
along the beam axis and 200ps in time. The resulting line density of vertices, peaking at 1.3 and
1.9 mm�1 for 140 and 200 pileup events, respectively, will cause the spatial overlap of tracks and
energy deposits from different interactions. Pileup mitigation, which in CMS rely upon global
event description through particle-flow algorithms [4] and particle-vertex association, will become
progressively ineffective in the transition from 140 to 200 pileup events, hence the degradation in
the reconstruction of the physics objects coming from the interaction of interest, impacting many
key physics measurements.
In this scenario, a timing measurement capability of all charged particles is a powerful tool for
pileup mitigation, as spatially overlapped vertices can be resolved in the time domain. With a
⇠ 30ps precision on the timing measurement, the effective multiplicity of pileup events would be
reduced to levels comparable to current LHC, as shown in figure 1.
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Figure 1: Left: simulated and 4D-reconstructed vertices in a 200 pileup event assuming a timing measure-
ment with 30ps resolution is available for all charged particles. The vertical lines indicate 3D-reconstructed
vertices, with instances of vertex merging visible throughout the event display. Right: rate of tracks from
pileup vertices incorrectly associated with the hard interaction vertex, normalized to the total number of
tracks in the vertex. The rate of incorrect association with timing (red markers) and for a vertex line density
of 1.9mm�1 (i.e. pileup 200) is the same of the no-timing case (blue markers) for a 0.3mm�1 vertex density
(i.e. pileup 40, current LHC).

Therefore, in addition to the already foreseen Phase II detector upgrades [2, 3], the CMS
Collaboration has proposed a new detector for the measurement of charged particle timing with
⇠ 30ps resolution. The description of the proposed detector is in section 2, while the impact of
precision timing on the CMS physics programs is detailed in section 3.

1

time information could help 
essentially for pattern recognition 

can be used to resolve 
cense vertex populations 

[ source ]

http://cds.cern.ch/record/2649414/files/CR2018_357.pdf?version=1
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Evolving towards a full template HEP detector?
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Several parties have expressed interest in a full detector 
- Full event reconstruction will need a Calorimeter & Muon System

Calorimeter description of FCC-hh 
available in DD4hep, could adapt it 
to OpenData detector 

No ad-hoc fast simulation exists 
Join forces with GAN/VAE calorimeter fast simulation developments?
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Calorimeter Reconstruction
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Charged and natural particles deposit energies in calorimeter cells
Pretend it’s a 2d problem

Figure from arXiv:1612.01551

I Of course it’s not

I Multiple types of particles

I Tracks have 5 parameters

I Calo energy has depth,

shape

I But thinking in 5d is hard

I Also experiment-specific

⌘
�

b
e
a
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

� �� �
�3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2�2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –
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Tracking view Calorimeter view 
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Calorimeter Reconstruction
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First build “clusters of cells” representing one particle 
- quite a lot of calibration, noise reduction, pile-up suppression 
- in general though a connected component analysis with constraints 

Run an interactive algorithm to cluster “particles” together into jets 
- this is done in 2D space (rapidity y, azimuthal angle ϕ)

Then cluster in 2d

1. Make every particle into a vector

2. Cluster in �–y space (y ⇡ ⌘)

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft

“ghosts”, clustered with four di�erent jets algorithms, illustrating the “active” catchment areas of

the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the

specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a

lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-

tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for

di�erent algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s

susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to

di�use radiation. The simplest place to observe the impact of soft resilience is in the passive area for

a jet consisting of a hard particle p1 and a soft one p2, separated by a y � � distance �12. In usual

IRC safe jet algorithms (JA), the passive area aJA,R(�12) is �R
2

when �12 = 0, but changes when

�12 is increased. In contrast, since the boundaries of anti-kt jets are una�ected by soft radiation,

4

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft

“ghosts”, clustered with four di�erent jets algorithms, illustrating the “active” catchment areas of

the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the

specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a

lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-

tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for

di�erent algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s

susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to

di�use radiation. The simplest place to observe the impact of soft resilience is in the passive area for

a jet consisting of a hard particle p1 and a soft one p2, separated by a y � � distance �12. In usual

IRC safe jet algorithms (JA), the passive area aJA,R(�12) is �R
2

when �12 = 0, but changes when

�12 is increased. In contrast, since the boundaries of anti-kt jets are una�ected by soft radiation,

4

dguest@cern.ch (UCI) How do we define jets? July 20, 2017 7 / 12



TrackML - Grand Finale - July 1st & 2nd 2019, CERN

Jet Identification quark/gluon jet tagging with CNNs
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Jets from quarks and gluons 
have different morphologies 

- identification helps to  
clear the macroscopic from 
the microscopic view 

Supplement this adding color 
to the images:

Figure 1: The average jet images for 200 GeV Pythia gluon jets (top) and quark jets

(bottom) shown after normalization (left) and after the zero-centering and standardization

(right). Di↵erent linear color scales are used to highlight the important features of each step.

On the left the quark jets have more intensity in the five core pixels whereas the gluon jets are

wider. On the right, the standardization procedure illustrates that quark jets are narrower

and emphasizes the softer outer radiation.

3.2 Network architecture

The deep convolutional network architecture used in this study consisted of three iterations

of a convolutional layer with a ReLU activation and a maxpooling layer, all followed by

a dense layer with a ReLU activation. To predict a binary classification between quarks

and gluons, an output layer of two units with softmax activation is fully connected to the

final dense hidden layer. An illustration of the architecture used is shown in Figure 2. The

dropout rate was taken to be 0.25 after the first convolutional layer and 0.5 for the remaining

layers, with spatial dropout (drop entires feature maps) used in the convolutional layers. Each

convolutional layer consisted of 64 filters, with filter sizes of 8⇥8, 4⇥4, and 4⇥4, respectively.

– 7 –

Source: 
arxiv.org:612.01551

function with a batch size of 128 over 50 epochs and an early-stopping patience of 2 to 5

epochs.

Only moderate optimization of the network architecture and minimal hyperparameter-

tuning were performed in this study. This optimization included exploration of di↵erent

optimizers (Adam, Adadelta, RMSprop), filter sizes, number of filters, activation functions

(ReLU, tanh), and regularization (dropout, L2-regularization), though this exploration was

not exhaustive. Further systematic exploration of the space of architectures and hyperpa-

rameter values, such as with Bayesian optimization using Spearmint [51], might increase the

performance of the deep neural network.

3.3 Jet images in color

All implementations of the jet images machine learning approach that we know of take as

the input image a grid where the input layer contains the pre-processed energy or transverse

momentum in a particular angular region. This can be thought of as a grayscale image, with

only intensity in each pixel and all color information discarded. In computer vision one can

do better by training on color images, with red, green and blue intensities treated as separate

input layers, also known as channels. Thus, it is natural to try to apply some methods for

processing color to physics applications.

For particle physics, there are many ways the calorimeter deposits can be partitioned.

One could try to identify the actual particles: have one channel for protons, one for neutrons,

one for electrons, one for ⇡+ particles, one for KL’s, etc. Although it is not yet possible to

completely separate every type of metastable particle, advances in experimental techniques,

such as particle flow [52], indicate that this may not be too unrealistic. However, it is also

not clear that having 15 color channels would help and training with so many input channels

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

Each of these observables is evaluated on each image pixel. All channels of the image undergo

the following pre-processing: the images are normalized such that the sum of the red and

green channels is one; the zero centering and standardization are done for each pixel in each

channel according to I(k)ij ! (I(k)ij � µ(k)
ij )/(�(k)

ij + r). Here, I(k)ij is the intensity of pixel ij in

channel k of an image, and µ(k)
ij and �(k)

ij are the respective mean and standard deviation of

pixel ij in channel k in the training data.

The network architecture is designed to respect the overlay of the di↵erent color images.

That is, every image channel feeds into the same units in the network and the weights from

– 9 –

https://arxiv.org/pdf/1612.01551.pdf
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Jet Identification quark/gluon jet tagging with CNNs
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Jets from quarks and gluons 
have different morphologies 

- identification helps to  
clear the macroscopic from 
the microscopic view 

Preprocessed images 
fed into a CNN  

- max-pooling  
- dense layer 
- finally 2 output 

nodes for quark/ 
gluon classification 

Source: 
arxiv.org:612.01551

https://arxiv.org/pdf/1612.01551.pdf
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Jet Identification quark/gluon jet tagging with CNNs
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Some performance checks:

Figure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.

5.1 Colored jet images

The benchmarks in the previous section were compared to the jet images with and without

color, where the three color channels correspond to separating out the charge and multiplicity

information as described in Section 3.3. Figure 6 shows the SIC curves of the neural network

performances with and without color on Pythia jet images. For the 100GeV and 200GeV

images, only small changes in the network performance were observed by adding in color of

this form. For the 500GeV and 1000GeV jet images, performance increases were consistently

– 13 –

Source: 
arxiv.org:612.01551

https://arxiv.org/pdf/1612.01551.pdf


TrackML - Grand Finale - July 1st & 2nd 2019, CERN 

Provide simulator instead of dataset ?
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Input for                  simulation

<xml>
.json

detector

physics
HepMC

on the fly

      tsa

.csv 
.obj
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Part 2 Expanding the technological scope
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Trends in Computing
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End of Moore’s law … 

Discrete GPUs: current status
• GPU’s raw power follows  the exponential trend on numbers of 

transistors and cores
• New features appear unexpectedly, driven by market (e.g. tensor 

cores)
– Tensor cores: programmable matrix-multiply-and-accumulate units
– Fast half precision multiplication and reduction in full precision
– Useful for accelerating deep learning training/inference

22https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

Phase-2 of TrackML offered  
VMs with 2 cores 

(not really targeting where  
industry moves to) 
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Trends in Computing HPCs
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[ source ]

Trends towards HPCs 
requires action for HEP 

https://www.top500.org/lists/2019/06/
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on GPUs?

�16

Running a GPU based TrackML challenge natural next step

GPUs - Programmability
• NVIDIA CUDA: 

– C++ based (supports C++14), de-facto standard
– New hardware features available with no delay in the API

• OpenCL: 
– Can execute on CPUs, AMD GPUs and recently Intel FPGAs 
– Overpromised in the past, with scarce popularity

• Compiler directives: OpenMP/OpenACC
– Latest GCC and LLVM include support for CUDA backend

• AMD HIP:
– Interfaces to both CUDA and AMD MIOpen, still supports only a subset of the CUDA 

features
• GPU-enabled frameworks to hide complexity (Tensorflow)
• Issue is performance portability and code duplication

24

[ source ]

many ML packages have GPU support!

https://indico.cern.ch/event/759388/contributions/3326339/attachments/1813982/2963995/CPUs_GPUs_accelerators_and_memory_v1.0.pdf
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on GPUs?

�17

Running a GPU based TrackML challenge natural next step

 

If we want to run a combined accuracy/speed score 
- need a similar environment  

as Phase-2 with GPU backend  
- need hardware resources

https://indico.cern.ch/event/759388/contributions/3326339/attachments/1813982/2963995/CPUs_GPUs_accelerators_and_memory_v1.0.pdf


TrackML - Grand Finale - July 1st & 2nd 2019, CERN

Final comments
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I hope you had fun in the challenges, 
and you stick around ! 


