
Spack for HEP Software
Deployment

Ben Morgan

University of Warwick

With input from the HSF S&PT Working Group 2020-05-05

2https://spack.io

https://spack.io

More on Spack

● Far more than can be covered in this talk!
● Spack has an excellent set of documentation available:

○ Full reference guide: https://spack.readthedocs.io/en/latest/
○ Tutorials: https://spack-tutorial.readthedocs.io/en/latest/#

● … with discussion fora on
○ Google: https://groups.google.com/forum/#!forum/spack
○ Slack: https://spackpm.slack.com

● … and development/issues/contribution on GitHub
○ https://github.com/spack/spack

● Here I’ll focus only on a few specific aspects of Spack relevant for this
meeting: microarchitecture handling, package deployment and reuse.

3

https://spack.readthedocs.io/en/latest/
https://spack-tutorial.readthedocs.io/en/latest/#
https://groups.google.com/forum/#!forum/spack
https://spackpm.slack.com
https://github.com/spack/spack

Spack Specs
● Core concept in Spack is that every package has a “spec” that describes how

it should be, or was, built, including
○ Version, compiler-version built with, options used (“variants”)
○ Those parameters for each dependency used down the dependency graph

● Taking an example from the Spack docs:
○ spack install mpileaks@1.2:1.4 %gcc@4.7.5 +debug -qt arch=bgq_os ^callpath@1.1

%gcc@4.7.2
○ Means: “install the mpileaks library at some version between 1.2 and 1.4 (inclusive), built using

gcc at version 4.7.5 for the Blue Gene/Q architecture, with debug options enabled, and without
Qt support. Additionally, it says to link it with the callpath library (which it depends on), and to
build callpath with gcc at version 4.7.2”

● Here we’ll focus on how we can use specs handle microarchitectures/GPUs
and how Spack organize sets of specs, optionally reusing existing
system/Spack packages 4

Microarchitectures

● Package specs have “architecture” attribute: platform-os-target
○ E.g. linux-centos7-skylake

● Aware of both generic families, e.g. x86_64, and specific implementations, e.g.
skylake (Intel), bulldozer (AMD)
○ https://spack.readthedocs.io/en/latest/basic_usage.html#support-for-specific-microarchitectures

● Architecture is used in install_path_scheme, the directory layout template for
installed packages, so they can be distinguished:

5

NB: Can also have mix of
platform/os in same
spack instance. E.g. also
distribute centos8,
ubuntu, macOS through
buildcaches

https://spack.readthedocs.io/en/latest/basic_usage.html#support-for-specific-microarchitectures

GPU Architectures (CUDA)
● Packages needing CUDA can write the package.py “recipe” using

CudaPackage:
○ https://spack.readthedocs.io/en/latest/build_systems/cudapackage.html

● Introduces cuda and cuda_arch variants to enable use/select arch, e.g
○ spack install vecgeom +cuda cuda_arch=72

6

https://spack.readthedocs.io/en/latest/build_systems/cudapackage.html

Environments: Grouping packages for use
● “... used to group together a set of specs for the purpose of building,

rebuilding and deploying in a coherent fashion”
○ Manifest (spack.yaml) and Lock (spack.lock) files like Ruby/Rust (manual config also possible)

● Simplest use case: specs for specific versions+variants, e.g. for a release:

● Environment will reuse packages that exist, install missing ones:
○ spack env create myenv example.yaml
○ spack env activate myenv
○ spack install

● Can be created in the Spack instance, or by end-user in separate directory 7

https://spack.readthedocs.io/en/latest/environments.html#environments
https://spack.readthedocs.io/en/latest/environments.html#environments

Using Spack Environments

● An environment can be activated/deactivated much like a virtualenv:

● It can contain a “view” of the packages just like an LCG view, or a “loads” shell
script can be created that loads modulefiles for each package in the
environment

8

Stacks: Environments for Librarians/Deployers

● Environments can also install a set of specs across different “axes” such as
compilers or microarchitectures, e.g.

○ Results in 9 (+deps) installs, each of cmake, zlib, vecgeom compiled for each target
○ Much like build matrices in CI systems

● Many more options available to conditionally include/exclude specs, and to
“project” packages into views.

9

https://spack-tutorial.readthedocs.io/en/latest/tutorial_stacks.html#stacks-tutorial

Containerize: Images from Environments
● Given an environment spack.yaml file, a recipe to pack it in a container image

can be generated:
○ spack containerize > Dockerfile

● container: attribute in spack.yaml can be used to provide some fine tuning
information, e.g.

● With HEP deployment use cases, more for those that need “fat” images or
deployment of specific applications? 10

Buildcaches: Spack’s binary distribution method
● A Spack instance may connect to a mirror containing prebuilt packages:

○ spack mirror add mycache https://some.url

● Packages are simple GPG signed tarballs organised under the mirror by spec
● Packages can be installed using

○ spack install <spec> : will look in buildcache first, only compiling if <spec> not found
○ spack buildcache install <specs> : install matching specs from buildcache, allows for install

of multiple packages, potentially with different OS/microarchitectures than host machine.

● Binary packages can be added to a buildcache using
○ spack buildcache create -d <buildcachedir> <spec>

● Upcoming Spack developments will provide a LLNL hosted source/binary
mirror plus a major update to the spec “concretizer” to speed up and better
handle dependency resolution/reconciliation (see FOSDEM 2020 and SC19
presentations)

11

https://fosdem.org/2020/schedule/event/dependency_solving_not_just_sat/
https://spack.io/spack-at-sc19/

Packages.yaml: Reusing system packages

● This file allows customization of build preferences, and also to specify
particular specs as provided externally to Spack, e.g.

● Balance between system/Spack installed packages up to librarian
● Buildcaches can help here in reducing, albeit not eliminating, rebuilds for local

installs (modulo package relocatability), reducing need for system packages

12

Chains: Reusing Spack installed packages

● A given spack instance can be pointed to the package install root of another
using the upstreams.yaml configuration file, e.g.

● Here, any required packages would be looked for in first, then second.
● However, upstreams have no knowledge that their packages are used

○ A downstream must ensure that it does not use the upstream when the latter is being modified
○ An upstream should not remove packages as it does not know if a downstream depends on

any of them

● Requires careful use and management.
13

Summary
● Spack provides a range of features that can assist in building and deploying

software, especially across different architectures and systems
● Key feature is the architecture attribute of package specs

○ Automatically builds/organizes packages by OS, OS version, CPU family/implementation

● GPU (CUDA) arch also enters via cuda_arch variant for those packages that
depend on CUDA

● Environments/Stacks allow sets of coherent packages to be defined, built, and
deployed for use by end-users natively, or via a container image

● Buildcache capability provides signed binary packages
● Packages can be reused from OS or other Spack instance deployments
● Spack developers have been very open and helpful with HEP requirements,

so further input and feedback on the librarian/deployment side welcome!
14

