

A HIGH GRANULARITY TIMING DETECTOR FOR THE PHASE-II UPGRADE OF THE ATLAS CALORIMETER SYSTEM: BEAM TEST RESULTS

Chiara Grieco (IFAE Barcelona)
On behalf of the ALTAS HGTD Group
8th BTTB, 27-31 January, Tbilisi

Overview

- HGTD motivation and requirements
- Low Gain Avalanche Detector technology
- HGTD test beam campaigns
- Results
- Summary and outlook

HGTD motivation

HL-LHC Phase

- o Instantaneous Luminosity up to $L\approx 7.5\times 10^{34}~cm^{-2}s^{-1}$ (\times 5 current L_{inst})
- Pile-up challenge:
 - $<\mu>=200$ interactions per bunch crossing!
 - \sim 1,8 collisions/mm on average
- Particle density increase:
 - Coarser granularity in LAr calorimeter
 - New ATLAS Inner Tracker (ITk) will provide coverages up to $|\eta|=4.0$
 - Decrease of z vertex reconstruction and physics object performance in the forward region
- High Granularity Timing Detector (HGTD) proposed in front of the end-cap calorimeter for pile-up mitigation
- Performance improvement by combination between
 - HGTD timing
 - ITk position information

High Granularity Timing Detector

- Detector located in an unoccupied region in front of the end cap calorimeter
- O Thickness in z=75~mm , Radial extension 120~mm < R < 640~mm, $2,4 < |\eta| < 4,0$
- Two double-side layers mounted on cooling disk
- Average number of hits per ring: 2,7 2,5 2,1

Time resolution

- ~ 30 ps resolution per track (~ 50 ps per hit) in a two layer geometry
- To reduce tracks association with hard scattered jets

Technology

- Instrumented with Silicon based Low Gain Avalanche Detectors (LGADs)
- Front-end electronics: ATLAS LGAD Timing ReadOut Chip (ALTIROC)

Total active area $6,4 m^2$

HGTD design concepts

Coverage

- Module overlap between layer sides optimised for uniformity
- Disk rotation in opposite direction to avoid gaps

Radiation effects

- $\sim 4000 \, fb^{-1}$ in HL-LHC lifetime
- Three ring layout
 - Inner ring replaced every $1000 fb^{-1}$
 - Middle ring replaced after $2000 fb^{-1}$
- Total Ionizing Dose (TID): 2 MGy
- Fluence: $2.5 \times 10^{15} n_{eq}/cm^2$

Operation

Sensors will be operated at -30 °C using a common CO₂ cooling system with ITk

Low Gain Avalanche Detectors (LGADs)

Pioneered by Centro Nacional de Microelectrónica (CNM)

- n-on-p silicon detector
- Signal amplification provided from the extra doped p-layer below the n-p junction
- High E field
- Internal gain: ~ 10-50 (large S/N ratio)
- Typical rise time: $\sim 0.5 0.8$ ns
- Time resolution before irradiation < 30 ps
- $50 \ \mu m$ thick sensors \rightarrow faster rise time and lower impact from radiation

R&D program

- Provide sensors meeting the time resolution, gain and radiation hardness requirements
- \circ 50 μm thin LGAD chosen as baseline
- Different doping material (B, Ga, B+C)
- Different manufacturers: CNM, HPK, FBK, BNL and IHEP-NDL
- \circ Interest to study LGAD performance at high fluences beyond $10^{15}\ n_{eq}/cm^2$
- Test beam results will be presented for a CNM Gallium doped LGAD sensor irradiated to $3 imes 10^{15} \ n_{eg}/cm^2$

HGTD Test beam Campaigns

2016 CERN SPS

Un-irradiated sensors, 120 GeV pions

2017 CERN SPS

Un-irradiated and irradiated CNM and HPK single pads and arrays, 120 GeV pions. Paper: **2018 JINST 13 P06017**

2018 CERN SPS

CNM, HPK and BNL sensors, different dopings, 2×2 sensor with ALTIROCO_v2, arrays with different nominal gap, 80 - 160 GeV pions

2019 DESY

CNM, HPK, FBK and NDL sensors, n and p irradiated and un-irradiated single pads and arrays, ALTIROC1 v2 coupled to a sensor, 5 GeV electrons

Test Beam DAQ and trigger

- FE-I4 plane used as a trigger reference for data taking
- Definition of a ROI mask in the FE-I4 plane
 - Only accepts track passing trough this area which cover all LGADs position
 - Use of inverted signal from FE-I4 HitOr (TTL → NIM)
- ~ 100 ns delay on scintillator signal to match HitOr signal in the TLU trigger window
- 5 ns trigger window in the TLU
 - Triggers oscilloscope
 - MIMOSA readout
 - MMC3/USBpix
- Oscilloscope in segmented mode with time delay
 - When electrons hit the LGAD the oscilloscope retrieves corresponding waveforms
- DUTs on PI stage in a cooling box with dry ice

DAQ BUSY signal

Continuous beam at DESY

- Oscilloscope needs time to empty the buffer
- Need to simulate the SPS spill-like
- NIM electronics BUSY (20 s long pulse) system assembled for this purpose (Thanks to DESY support!)
- BUSY signal is input in the TLU and acquisition will be paused for 20 s

Track reconstruction and analysis framework

- Track reconstruction with EUTelescope v01-19-02 using GBL algorithm asking one hit in the FE-I4 plane
- Resulting ~30% of the events with average FE-I4 efficiency of 99.6%
- Waveform processing performed with LGADUtils framework (C++ based) developed at IFAE by V. Gkougkousis
 - Git repository: https://gitlab.cern.ch/ifaepix/lgad-timing-analysis/
- Match event between telescope and oscilloscope drop off event with no FE-I4 information

LGADUtils framework

- C++ based
- Working with Root v5-v6, different operating system
- Steps
 - Conversion oscilloscope binary data to Root ntuple with raw waveform information
 - Merging with track ntuple from EUTelescope
 - Waveform analysis
 - 1. Determination of pulse polarity, signal start and stop, determine if the pulse is noise or signal
 - 2. Calculate noise level and pedestal using Gauss fit, pedestal substraction, recalculation of start and stop of the signal
 - 3. Compute charge, rise time, time at different CFD fractions...
 - 4. Perform CFD Time Walk correction
 - User analysis
 - 1. Efficiency

Noise and Pedestal calculation

Collected charge vs bias voltage

CNM Gallium LGAD sensor W6S1006 $3 imes 10^{15} \ n_{eq}/cm^2$

- Charge calculated as the integral of the signal area for each waveform after pedestal substraction
- For each voltage point the collected charge is given by the MPV value of the Landau-Gauss fit of the events charge distribution
- Collected Charge:
 - Bias voltage range: 460 V to 740 V
 - 2 fC at ~ 680 V
 - Reaches 4 fC for optimal ALTIROC performance for bias voltage > 720 V

Time resolution vs collected charge

CNM Gallium LGAD sensor W6S1006 $3 imes 10^{15} \ n_{eq}/cm^2$

 Calculated as the difference between the time at f_{CFD}=50% for DUT and the time at f_{CFD}=20% for the unirradiated LGA35 (reference time sensor)

$$\Delta t = t_{DUT(f_{CFD}=50\%)} - t_{LGA35(f_{CFD}=20\%)}$$

- O The time difference distribution is fitted with a Gaussian with the time resolution of the system defined as the σ of the Gaussian
- The contribution of the LGA35 is subtracted (\sim 29,7 ps at -28° C)
- \circ At ~ 740 V time resolution is ~ 48 ps

Efficiency vs bias voltage

 Effciency is defined for each bias voltage point as:

$$\varepsilon = \frac{Tracks in the ROI with signal>10 mV}{Tracks in the ROI}$$

- o For HV > 700 V \rightarrow Efficiency > 99%
- o 10 mV threshold chosen because is more than 5σ over the noise
 - Assuming a median noise level of 2 mV

2D map efficiency for $HV_{BIAS} = 740 \text{ V}$

CNM Gallium LGAD sensor W6S1006 $3 imes 10^{15} \ n_{eq}/cm^2$

Efficiency map for 740 V is defined as

$$\varepsilon = \frac{Tracks\ with\ Q > 2\ fC}{Total\ number\ of\ Tracks}$$

- Q > 2 fC threshold corresponds to ~15 mV for this voltage point
- HGTD electronics expected to start to be efficienct for charge bigger than 2 fC
- Average efficiency in the central $0.5 \times 0.5 \ mm^2$ area is **99,1%**

Summary and outlook

- HGTD detector is proposed in ATLAS for pile-up mitigation during the HL-LHC phase
- O HGTD community is investigating LGAD performance at higher fluences (3 \times 10¹⁵ n_{eq}/cm^2) and exploring new doping materials
- HGTD community is preparing the TDR, to be submitted to LHCC in April 2020
- \circ Test beam results of a CNM Gallium doped LGAD sensor irradiated to $3\times 10^{15}~n_{eq}/cm^2$ are presented
- Parameters as collected charge, time resolution and efficiency are studied and are close to the HGTD requirements
- Four test beam periods are foreseen this year at DESY to test new sensors ad electronics

BACKUP

HGTD motivation

HL-LHC Phase

- o Instantaneous Luminosity up to $L\approx 7.5 \times 10^{34}~cm^{-2}s^{-1}$ (\times 5 current L_{inst})
- o Pile-up challenge:
 - $<\mu>=200$ interactions per bunch crossing!
 - \sim 1,8 collisions/mm on average
- Particle density increase:
 - Coarser granularity in LAr calorimeter
 - New ATLAS Inner Tracker (ITk) will provide coverages up to $|\eta|=4.0$
 - Decrease of z vertex reconstruction and physics object performance in the forward region
- High Granularity Timing Detector (HGTD) proposed in front of the end-cap calorimeter for pile-up mitigation
- Performance improvement by combination between
 - HGTD timing
 - ITk position information

Timing contributions

- \circ Landau term < 25 ps
 - Reduce for thin sensors $35 50 \mu m$
- Jitter term < 15 ps and time walk correction < 10 ps
 - Low noise and fast signals
- o Digitization granularity $\sim 5 \ ps$
- \circ Clock distribution $< 10 \ ps$

- Time walk correction for test beam data using the Costant Fraction Discriminator (CFD) technique
 - Time at a fraction of 50% of amplitude

Timing reference system

- 4 quartz bars
 - UVFS window
 - 3×3×10 mm³
 - 6 side-polished
- Translucent optical grease
- 4 single channel SIPMs from sensL
 - 4×4 mm² base
 - 0.7 mm thickness
- 4 SIPM readout and amplification boards
 - Shielding for amplification circuitry
- 3D printed quartz light-tight enclosure
 - Main cover and top plate
 - Holes for pins, screws, bar and SIPM

SIPM detects Cherenkov photons generated by charged pions in quartz

Sensor and readout board

More than 50 sensors (un-irradiated, p- and n-irradiated) tested so far

LGAD readout boards with trans-impedance first stage amplifier

Voltage second stage amplifiers with hermetic E/B cover design

- Sensor attached to board using double-sided conductive tape
- Amplifier input coupled to metallization layer via wire bonds
- Guard ring grounded

- Gain of ~10
- 2 GHz Bandwidth

Second stage amplifier output to oscilloscope

ASIC readout for **HGTD**

ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)

- Minimize noise and power consumption
- Provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements
- Readout target time resolution < 25 ps
- 300 ps preamplifier rise time to minimize jitter
- Discriminator threshold can be set for small enough values of input charge
 - Minimum threshold for a 4 fC charge value with efficiency of 95%
 - Time resolution will be dominated by the jitter at high levels of irradiation

Development

ALTIROC 0

- Single pixel analog readout (preamplifier + discriminator)
- Test bench measurements satisfactory
- Beam test October 2018 @ CERN SPS beam line

ALTIROC 1

- Full single pixel readout (analog + digital) in 5×5 arrays
- Test bench (Jan 2019)
- Beam test August & November 2019 @ DESY beam line: analysis on going

ALTIROC 2

- Full version with 15x15 channel readout
- Available Spring 2020

 5×5 HPK LGAD bumb-bonded to ALTIROC1_v2

ALTIROCO performance in test beam

First results for ALTIROCO ASIC from test beam

- 2018 October testbeam at CERN SPS beam line, 120 GeV pion beam
- \circ 2 × 2 CNM LGAD sensor bump-bonded to ALTIROCO
- TOA as a function of the amplitude of preamplifier probe
 - Fit the profile of 2D distribution (black dots) with a polynomial to correct timewalk effect
- \circ Time resolution of a channel of a 2×2 CNM LGAD array as a function of the discriminator threshold
 - Before time walk correction (black dots)
 - After time walk correction (red dots)
 - 40 ps SIPM used as a time reference
 - Time walk correction performed with amplitude of preamplifier probe
 - 30% improvement in time resolution after correction

