The BL4S Data Acquisition System

Cristóvão B. da Cruz e Silva

on behalf of BL4S Team

Overview

- DAQ Hardware
 - NIM
 - VME
 - Micromegas
- DAQ Software
 - GUI
 - Readout Modules
 - Monitoring
- EUDET Type Telescope DAQ
 - Hardware
 - Software

DAQ Hardware - NIM

- HV Modules
 - Power detectors
- Discriminators
- Coincidence Unit
 - For trigger logic

2018 NIM Crate Setup (Both BL4S experiments)

DAQ Hardware - VME

- SBC
 - DAQ Software
 - Data storage
- TDC (CAEN v1290)
 - 25 ps resolution
- QDC (CAEN v792)
- CORBO (Trigger Board)
 - Synchronous system

2018 VME Crate (Mid setup)

DAQ Hardware - MM

- Micromegas design based on the Atlas NSW MM design
- In 2019, readout was changed to MMFE8 (used APV previously)
 - Trigger is distributed through a dedicated NIM module
 - Clock and trigger are sent over HDMI cable
 - Data is sent out through UDP over ethernet

Prototype MMFE8 w/ Ethernet readout

DAQ Hardware - MM

- Pros:
 - Very reduced development time
 - Extremely capable readout module
- Cons:
 - Constrained by Atlas design, eg: complex system to set up
 - Issues with connection of the channels from detector to board

Prototype MMFE8 w/ Ethernet readout

DAQ Hardware

DAQ Software

- Based on the Atlas "ROD Crate DAQ":
 - RCDAQ designed to be used in a wide set of environments
 - Can run in a multiuser and multi-PC environment, i.e. it is a scalable DAQ
 - Typically: SBC runs the DAQ processes; run control PC runs GUI interface; monitoring PC runs monitoring processes and second GUI interface
- Custom readout modules for the VME modules and for the micromegas
- Custom monitoring programs
 - Monitor module performance, e.g. a monitor for the TDC
 - Monitor physics data, e.g. a monitor for the DWC detector

RCDAQ GUI

RCDAQ Readout Modules

- One readout module for each VME module type and one for MicroMegas; readout modules written in C++
- Each readout module implements the state transitions for the associated hardware
- Each readout module also implements data retrieval, placing the relevant data into a ROD fragment, which is then placed in the output data stream
 - BL4S has settled into a common format for the ROD fragment
- Each readout module has O(500) lines of code (only cpp files)

RCDAQ Monitoring

- Events are sampled on a best-effort basis, i.e. monitoring does not affect deadtime
- A monitor is a stand alone program that runs independently from the DAQ, but subscribes to the DAQ
 - Each monitor receives the full RAW data event
 - Monitors can also be ran over the RAW data files, producing a root file with histograms and other info
- Monitors can publish histograms, these are then available through the RCDAQ GUI
- Typically 400 to 900 lines of code

RCDAQ Pros & Cons

- RCDAQ inherently contains several desired features, e.g. best effort monitoring, multi-PC environment, inter process communication over network
- RCDAQ provides base infrastructure for readout modules and monitors, enabling compact code and quick development

- Very complex system, have to rely on help from experts when experiencing more exotic errors
- RCDAQ is very sensitive to the network configuration
 - Changing IP/location (e.g. CERN to DESY)

EUDET Type Telescope DAQ

- In 2019, with the move to DESY, the DESY beam telescopes became available
- Options for integration with previous DAQ system:
 - Re-implement EUDAQ functionality in RCDAQ
 - Re-implement RCDAQ functionality in EUDAQ
 - Run both DAQ systems in parallel and synchronously

EUDET Type Telescope DAQ Hardware

- EUDAQ responsible for triggering, but sends data to RCDAQ
 - BUSY signal from VME sent to TLU

EUDET Type Telescope DAQ Software

- EUDAQ Producer
 - Take Mimosa data and encapsulate it in a frame
 - Send frame over UDP
- RCDAQ Readout Module
 - Receive UDP packet
 - Reformat frame into ROD fragment
- RCDAQ Monitors
 - Hit monitor
 - Correlation monitor (between planes and between other tracking detectors)
 - 3D Event monitor

Implemented ~ 1 week

Conclusion

- The standard BL4S DAQ is modular and flexible, thanks to its roots in RCDAQ
 - It can be adapted to a wide variety of different experiments
- New modules/detectors and monitoring programs can be implemented with a quick turnaround
- Sucessfully combined RCDAQ and EUDAQ into a hybrid DAQ

Thank you!

Questions?