LGAD Performance at Low Energy Proton and Ion Beams for Ion CT

Florian Pitters
On behalf of the protonCT group at HEPHY/TU Wien

florian.pitters@oeaw.ac.at

Austrian Institute of High Energy Physics

BTTB8 Workshop Tbilisi 2020
30.01.2020
Ion Therapy in a Nutshell

- Cancer treatment with **ion irradiation**
 - Cause **cellular damage**
 - Either via direct ionisation of DNA molecules or indirect via creation of free chemical radicals

- Ion beams allow for a **strongly localised energy deposition**
 - More accurate dose profile compared to photons
 - Allows treatment of tumours close to radiosensitive tissue, e.g. optical nerve

- Two therapies: Protons and heavier ions
 - Protons allow for sharp distal edge
 - Heavier ions have higher biological effectiveness (RBE) but show a tail dose due to fragmentation
 - Different ions used for different tumours

dose deposition in water [GATE simulation]
MedAustron in a Nutshell

- Ion therapy centre for cancer treatment
 - Synchrotron accelerator complex located close to Vienna
 - Four irradiation rooms:
 - **IR1**: Exclusive to research (up to 800 MeV protons, low flux)
 - **IR2, IR3, IR4**: Clinical use (up to 250 MeV protons, GHz rates)
 - Beam delivery only in one room at a time

- Beam parameters for IR1
 - **Protons**: 60 MeV to 800 MeV
 - **Carbon Ions**: 120 MeV/n to 400 MeV/n
 - Helium: potential upgrade
 - Particle rates: kHz to GHz

- In operation since end of 2016

See talk by F. Ulrich-Pur from Monday
Imaging with Ion Beams

- **Aim:** **3D map of stopping power** within object
 - Requires ΔE and path estimate

- **Particles with energy E**
 - Pass front tracker
 - Lose energy ΔE in object
 - Pass rear tracker
 - Deposit energy E-ΔE in calorimeter

- **Ion CT**
 - **Measure ΔE and path estimate**
 - **Rotate** object and **reconstruct**
 - 3D map of stopping power within object
 - Avoids conversion uncertainties from photon attenuation coefficients (x-ray CT) to stopping power (ion therapy)
 - **Same particle species for treatment and imaging**
An Apparatus for Ion CT

- Requirements
 - Spatial resolution of about 1x1x1 mm\(^3\) (typical voxel size) in the object
 - **Energy resolution of about 1%**
 - Data acquisition rate of >1 MHz
 - **Rad hard to ~1e13 protons** over 10 years of operation
 - Coverage >10x10 cm\(^2\)

- Typical Setup
 - Front and rear tracker
 - Scintillating fibres or Si-strip
 - Energy measurement
 - Crystal calorimeter: CsI, YAG:Ce
 - Range counter: stack of thin detector layers made of scintillators or CMOS
 - **Time-of-flight measurement**
Time-of-Flight for Ion CT

- Typical beam for ion CT is 250 MeV protons
 - Optimal beam energy and species is **tradeoff between MCS and stopping power contrast**
 - Most facilities provide 250 MeV protons as largest available (incident) energy
 - MedAustron also provides carbon and possible helium

- Benchmark case is **20 cm water target**
 - Approximate size of adult head
 - **Residual proton energies** approx. 150 MeV

- Energy measurement via **ToF competitive**
 - 50 ps via 2 planes á 35 ps ($\sigma_E \sim 1.9\% @ 150$ MeV)
 - 30 ps via 4 planes á 30 ps ($\sigma_E \sim 1.2\% @ 150$ MeV)
 - Improves with lower residual energy!
LGADs in a Nutshell

- Thin silicon pad detectors with gain of ~10
 - Additional high **p-doped gain layer** in n-in-p diode to create field in excess of 200 kV/cm
 - Controlled impact multiplication

- Gain boosts S/N & t_{rise} and improves time resolution
 - **Jitter term** dominated by t_{rise} and S/N
 - **Constant term** dominated by Landau noise, synchronisation between channels and TDC

\[
\sigma_t^2 \approx \left(\frac{a_{\text{jitter}}}{S/N} \right)^2 + c_{\text{floor}}^2
\]
LGADs for Ion CT

- Excellent time resolution
 - Time resolutions of 30 ps envisaged for CMS/ATLAS timing layer for single MIPs
 - **Energy deposition** in relevant beam range is several MIPs
 - Energy deposition of heavy ions is less ‘Landau-like’ and could allow for a reduced Landau noise

- Good radiation hardness
 - **Radiation hardness** shown to above 1×10^{15} [1]

- Could render **rear tracker unnecessary**
 - Required precision driven by MCS limit and varies with object length
 - Spatial resolution of 0.5 mm achievable with current LGAD designs
 - Significant efforts for further improvements
Test Beam Setup

- **Sensors:** Single diodes
 - FBK UFSD2 production
 - Sensitive area $1 \times 1 \text{ mm}^2$

- **Frontend:** UCSB single LGAD board
 - 1st amplification stage: Infineon BFR840 SiGe
 - 2nd amplification stage: Not needed!
 - Two boards back to back with 2.5 cm spacing

- **Backend:** Tektronix Oscilloscope 25GS/s and 8 GHz BW
 - Diodes have intrinsic rise time of ca. 500 ps
 - Operation at 1 GHz has shown best S/N values

- **Offline:** Waveform analysis
 - Rising edge fit to extract timestamp at CF=30%
 - RMS of the time difference between two planes
Laser Characterisation

- Initial characterisation in typical TCT setup
 - 1064 nm PILAS IR laser

- Saturation of Front End Components
 - UCSB board typically used for MIP detection with 2 amplification stages
 - 2nd amplification stage saturates quickly but is not needed for our application
 - 1st amplification stage more or less linear

- Gain of ~7 at 350V
 - Highest gain used in test beam
 [Keep in mind that we are not detecting MIPs]
Results for Protons

- Resolutions around 50 ps achieved for beam energies below 200 MeV
 - Not quite the expected 30 ps
 - Higher beam energies could clearly profit from more gain
Results for Carbon Ions

- Resolution below 40 ps achieved for all beam energies
 - Better resolution at lower bias voltage hints to shielding effects
 - Gain not really required for carbon imaging
 - Constant term (= Landau noise?) appears to be smaller for carbon ions

![Graph showing time resolution vs beam energy](image)

![Graph showing time resolution vs bias](image)
Discussion I

- **Jitter contribution**
 - Mean system rise time ~ 500 ps
 - Effective values of S/N ~ 20 should allow for ~ 30 ps jitter contributions
 - At same S/N, carbon ions yield better resolution than protons

- **Synchronisation**
 - Synchronisation uncertainty between oscilloscope channels ~17 ps

- **Gain not high enough?**
 - Certainly 250 & 800 MeV protons could profit from higher S/N
 - But also the rise time seems to benefit
 - We will have another 8 hours of beam time in 4 weeks from now with higher bias
Discussion II

- **Jitter contribution**
 - Mean system rise time \(\sim 500 \text{ ps} \)
 - Effective values of S/N \(\sim 20 \) should allow for \(\sim 30 \text{ ps} \) jitter contributions
 - At same S/N, carbon ions yield better resolution than protons

- **Synchronisation**
 - Synchronisation uncertainty between oscilloscope channels \(\sim 17 \text{ ps} \)

- **Gain not high enough?**
 - Certainly 250 & 800 MeV protons could profit from higher S/N
 - But also the rise time seems to benefit
 - We will have another 8 hours of beam time in 4 weeks from now with higher bias

mean rise time for protons

RMS of rise time for protons
Summary and Next Steps

- ToF measurements present a viable option for ion CT
 - Many advantages (at least on paper) compared to traditional approaches
 - LGADs are a natural detector candidate that would give the required rad. hardness & rates
 - Utilise the current boost in activity from HEP community

- On LGADs the results are inconclusive
 - 50 ps for protons and 40 ps for carbon ions were reached
 - Encouraging enough to move forward
 - It appears that Landau noise is indeed reduced for carbon ions but more evidence is needed

- The next step needs to include a path towards a larger system
 - Identify the best suited ASIC for a small demonstrator setup
 - SiGe BiCMOS could be an interesting possibility
 - We are open for suggestions!
Acknowledgements

Thank you for your attention!

Contributors:
- Felix Ulrich-Pur
- Thomas Bergauer
- Alexander Burker
- Albert Hirtl
- Christian Irmler
- Stefanie Kaser
- Manuel Ruckerbauer
- Vera Teufelhart

Collaborators:
- EBG MedAustron

Merci beaucoup also to N. Cartiglia and H. Sadrozinski for providing us with LGAD samples and the readout board design!
References

Backup
Proton vs Photon Therapy

Dose comparison for photon (left) and proton (right) treatment plans [3]