

Gamma-ray calorimetry in Nuclear Physics experiments

Pablo Cabanelas, Univ. Santiago de Compostela 8th Beam Telescopes and Test Beams Workshop Tbilisi, 27th - 31st January 2020

- Introduction to calorimetry
- Gamma-rays detection
 - Gamma interactions
 - Detecting gamma-rays
 - Understanding a gamma-ray spectrum
- Gamma-ray emission in Nuclear Physics Experiments
 - Reactions and excited states
 - Some γ-ray calorimeters
 - Event reconstruction: addback
- Concluding remarks

Introduction to calorimetry

- Gamma-rays detection
 - Gamma interactions
 - Detecting gamma-rays
 - Understanding a gamma-ray spectrum
- Gamma-ray emission in Nuclear Physics Experiments
 - Reactions and excited states
 - Some γ-ray calorimeters
 - Event reconstruction: addback
- Concluding remarks

Introduction

Calorimetry: act of measure transferences of energy.

Calorimeter: device to measure the energy of particle through <u>total absorption</u>.

Basic idea: deposit the <u>full energy</u> in the medium (Shower formation).

Importance: know with precision the final states in particle collisions.

Calorimeter configurations:

Introduction

Introduction to calorimetry

- Gamma-rays detection
 - Gamma interactions
 - Detecting gamma-rays
 - Understanding a gamma-ray spectrum
- Gamma-ray emission in Nuclear Physics Experiments
 - Reactions and excited states
 - Some γ-ray calorimeters
 - Event reconstruction: addback
- Concluding remarks

Gamma interactions

Gamma interactions

Photoelectric Effect

- The incident photon extracts an electron from the medium
- Dominates at low energies (<1 MeV)

Compton Scattering

- The incident photon "is scattered" and an electron is ejected at a given angle
- Becomes important at intermediate energies (~1 MeV)

Maximum energy change in a single interaction

Gamma interactions

Pair Production

- The incident photon interacts with the nuclear field and aa electron-positron is created
- Is the main contribution at high energies (>1 MeV)

Energy threshold!!

E = hv = 1.022 MeV

Two basic types of gamma-ray detectors:

Scintillating detectors

- Scintillating light produced after ionization
- Transparent to that light
- Organic (plastic), inorganic (Nal, Csl, BGO), ceramic (GAGG)
- Read-out with light sensors (PMTs, APDs, SiPMs)

Semiconductor detectors

- Electron-hole pairs are produced after ionization
- Very good resolution
- Silicon, Germanium, Cdbased

KEY FACTOR:

The output should be proportional to the energy deposited by the incident photons

Output pulses must be sorted by magnitude

IGFAE PERCELENCIA Instituto Galego de Física de Altas Enerxias PERCELENCIA Detecting γ -rays

Sorted pulses by amplitude. <u>Histogram</u> Calibration linear with E

Understanding the spectrum

 $\Delta \lambda = \lambda_c (1 - \cos \theta)$

200

المليقين وموامل

400

Gamma Energy in keV

600

0.6

0.5

 \mathbf{C} \mathbf{O}

u 0.4n t 0.3 s

k 0.2e ν

0.1

0 0

Understanding the spectrum

- Introduction to calorimetry
- Gamma-rays detection
 - Gamma interactions
 - Detecting gamma-rays
 - Understanding a gamma-ray spectrum
- Gamma-ray emission in Nuclear Physics Experiments
 - Reactions and excited states
 - Some γ-ray calorimeters
 - Event reconstruction: addback
- Concluding remarks

Nuclear reactions have intermediate excited states

Gamma emission

We can measure the energy, spin and parity of the excited states (EM transitions)

We can understand:

- Collective excitations
- Phase transitions

- Nuclear structure and shell model
- EOS

Heavy-Z target

fragment

• Nuclear Structure (n-rich nuclei)

"Low scale" facilities (Tandem or Van de Graaff accelerators)

Proton induced X-Ray and Gamma emission

GEAE

EXCELENCIA MARÍA DE MAEZTU

Some calorimeters

Some calorimeters

CrystalBall @ GSI (Germany) 162 Nal(TI) crystals + PMTs

CALIFA @ FAIR (Germany) 2432 CsI crystals + APDs 96 LaBr3/LaCl3 + PMTs

- All are segmented arrays!
- Wide range of gamma ray energies!
- Photons can fired more than one detection unit

Addback procedures needed!!

- Sum over neighbors
- Cluster finding methods
- Deep/machine learning techniques like ANN

Event reconstruction

Single 6.1 MeV γ -ray \longrightarrow At least 6 crystals fired!!

Event reconstruction

After Addback procedure

→ All released energy at one location!!

- Nuclear Physics reactions produce gamma-rays
- Gamma-ray calorimetry is required
- A good understanding of gamma interactions in our detectors is needed
- Experimental setups involve different kind of detector systems and gamma detectors arrays
- Dedicated analysis techniques are mandatory: calibrations, addback...

