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Content

Detector requirements for future high-energy
pp, e+e− and µ

+
µ
− collider experiments

(ep, PbPb and pPb colliders not covered in this talk)

I Facilities under study
I Hadron (pp) and lepton (e+e− / µ

+
µ
−) colliders

I Circular and linear

I Detector design mostly driven by facility-dependent
I Physics objectives
I Experimental conditions

I Proposed detector concepts
I Design choices
I Detector challenges

January 27, 2020 Eva Sicking: Detector requirements for future colliders 2



Overview:

High-energy collider proposals
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High-energy e+e− collider proposals

Circular Electron Positron Collider (CEPC)
√

s = 90–240 GeV;
Circumference: 100 km

Compact Linear Collider (CLIC)
√

s = 350/380 GeV, 1.5 TeV, 3 TeV;
Length: 11 km, 29 km, 50 km

Future Circular Collider (FCC-ee)
√

s = 90–240 GeV, 350–365 GeV;
Circumference: 97.8 km

International Linear Collider (ILC)
√

s = 250 GeV, 350/500 GeV (1 TeV);
Length: 20.5 km, 31 km (40 km)
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High-energy hadron collider proposals

Future Circular Collider (FCC-hh)
√

s = ∼100 TeV
(37.5 TeV with LHC type magnets);
Circumference: 97.8 km

High Energy-LHC
√

s = 27 TeV;
Length: 27 km

Super Proton Proton Collider (SppC)
√

s = ∼75 TeV
(125–150 TeV “ultimate”);
Circumference: 100 km
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High-energy muon collider proposals

Proton Driver Acceleration Collider Ring

Accelerators:    
Linacs, RLA or FFAG, RCS

Cooling
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Positron
Ring

AccelerationLow EMmittance Muon 
Accelerator (LEMMA): 
1011 µ pairs/sec from 

e+e− interactions.  The small 
production emittance allows lower 
overall charge in the collider rings 
– hence, lower backgrounds in a 

collider detector and a higher 
potential CoM energy due to 

neutrino radiation.

Muon colliders
√

s = up to 10 TeV;
Circumference: few km
(+ larger pre-accelerator complex)
Example: MAP-MC: 126 GeV – 6 TeV
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Future collider projects
Time lines

I Near future proposals (excluding ep colliders LHeC, EIC):
I e+e− colliders (ILC, CEPC, CLIC, FCC-ee)
I Low-energy FCC-hh (using LHC-type magnets in FCC tunnel: 37.5 TeV)

I Proposals for more distant future
I Hadron colliders with high-field (∼ 16 T) magnets (HE-LHC, FCC-hh, SppC)
→ Require further magnet development

I Muon colliders
→ Require further studies towards design reports

I Linear e+e− colliders with dielectric or plasma-wake-field acceleration
→ Require further studies towards design reports
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Physics programmes

→ Detector requirements
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High-energy hadron & lepton colliders
→ Aspects relevant for detector design

Hadron colliders (pp)

1) Hadrons are compound objects
I Initial state unknown
I Limits achievable precision
→ More relaxed accuracy

requirements on detectors

2) High rates of QCD backgrounds
I Complex triggers
I High levels of radiation

3) Strong forward boost

4) O(10 ps) timing requirement
(minimum bias)

Lepton colliders (e+e− / µ
+

µ
−)

1) Leptons are point-like
I Initial state well-defined
I High-precision measurements
→ Very high accuracy

requirements on detectors

2) Clean experimental environment
I Less/no need for triggers
I Lower radiation levels

3) Less forward boost (increase with s)

4) No or O(1 ns) timing requirement
(beam background)
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SM cross sections: pp versus e+e−

I In hadron collisions, interesting
events need to be found in huge
number of collisions

I Lepton collisions more clean
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µ
+

µ
−: BSM searches and SM cross sections

I µ
± less prone to synchrotron radiation: ∆E ∼ E 4/(m4 · R) (mµ = 207me)
→ potential to reach O(10 TeV) in circular collider of modest circumference

Selected SM µ
+

µ
− cross sections Equivalent parton centre-of-mass energy

I Similar SM cross sections in e+e−

and µ
+

µ
− (apart from QED-radiation

and small Yukawa effects)

I Cross section for many Higgs
production processes increases with√

s → large Higgs samples

I In pp collisions,
√

sparton-parton �
√

spp

I “Equivalent” reach at√
s

µ+µ− = 14 TeV and
√

spp = 100 TeV

I Searches in µ
+

µ
− → ff up to

mf ≤
√

s
µ+µ−/2
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Luminosities and energy reach: e+e−
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I Circular e+e− colliders
I Extremely high luminosities at low energies (Z, WW, ZH)

I Linear e+e− colliders
I High centre of mass energies (tt , ZH, Hνν, double Higgs, direct searches)
I Beam polarisation → characterisation of new particles or processes in detail

I Circular and linear e+e− colliders
I Comparable luminosities in overlap region (ZH, tt )

I Muon collider: reach multi-TeV energies
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Luminosities and energy reach: e+e−and µ
+

µ
−
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I Circular e+e− colliders
I Extremely high luminosities at low energies (Z, WW, ZH)

I Linear e+e− colliders
I High centre of mass energies (tt , ZH, Hνν, double Higgs, direct searches)
I Beam polarisation → characterisation of new particles or processes in detail

I Circular and linear e+e− colliders
I Comparable luminosities in overlap region (ZH, tt )

I Muon collider: reach multi-TeV energies
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LC e+e− detector performance requirements

I Momentum resolution

I Higgs recoil mass, smuon endpoint,
Higgs coupling to muons

→ σpT/p2
T ∼ 2× 10−5GeV−1

I Impact parameter resolution

I c/b-tagging, Higgs branching ratios

→ σrϕ ∼ a⊕ b/(p[GeV] sin
3
2 θ)µm

I a = 5 µm, b = 10− 15 µm

I Jet energy resolution

I Separation of W/Z/H di-jets,
Z and W width, HZ with Z → qq,
background reduction

→ σE/E ∼ 3.5%
(for high-energy jets, light quarks)

I Angular coverage

I Very forward electron and photon tagging

Example: H→ µµ @ 3 TeV
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+ Requirements from beam structure and beam-induced background

Differences between ILC, CLIC, FCC-ee, CEPC requirements rather small
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Experimental conditions
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Hadron colliders: Key parameters

I Example: pp collisions at 100 TeV (FCC-hh)
I Pileup: ∼1000 events/bunch crossing → spatial resolution, timing

I Average distance between vertices: 125 µm (7 times smaller than at HL-LHC)
I High radiation levels → radiation hardness

I High luminosity of 30x1034cm-2s-1

I pp collision rate of 31 GHz
I Charged track rate of ∼4 THz

I Forward boost → forward coverage
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Hadron colliders: Radiation levels

Assuming L = 30× 1034cm−2s−1 and 30 ab−1

Neutron equivalent fluence

I ∼ 1018neq/cm2 close to beam
pipe,

I 1015 − 1016neq/cm2 at
r > 40 cm (∼ HL-LHC)

I Extreme fluence in forward
calorimeters
→ Radiation levels 100 times
larger than what present silicon
sensors can sustain

Residual dose rate
I Dose from activation towards the

end of FCC operation

I Here: 1 week of cool-down,
similar picture after 1 year
→ Impact on access conditions
to experiment after several years
of operation
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Circular vs. linear e+e− colliders: Overview

I Circular e+e− colliders (CC)
1. Several interaction regions
2. Continuous operation
3. Synchrotron radiation
4. Beam strahlung

I Linear e+e− colliders (LC)
1. One interaction region in linear colliders,

alternatives: push-pull scheme or
2 beam-delivery systems (shared lumi.)

2. Operation in bunch trains
3. Very little synchrotron radiation in a linac
4. Have to achieve luminosity in single pass
→ Small beam size and high beam power
→ Beamstrahlung, energy spread

I Impact on LC/CC
detector designs

I Shielding
I Granularity
I Timing
I Cooling
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Circular e+e− colliders: Beam parameters

Property Unit FCC-ee (97.8 km) CEPC (100 km)
Z WW ZH tt Z (2T) WW ZH√

s GeV 91.2 160 240 365 91 160 240

Lumi./IP 1034/cm2s 230 28 8.5 1.55 32.1 10.1 2.93
Bunches/beam 16 640 2 000 393 48 12 000 1 524 242
Bunch sep. ns 20 163 994 3396 25 210 680
Synch.rad. power MW ≤ 50 ≤ 50 ≤ 50 ≤ 50 16.5 30 30
Beam σxy, IP µm/nm 6.4/28 13/41 14/36 38/68 6/40 13.9/49 20.9/68

Beam energy can be measured to very high accuracy (∼50 keV)

I At Z peak, high luminosity combined with high e+e− cross section
I Achieve very low statistical uncertainties (∼ 10−4 − 10−5)
→ Drives detector performance req. to match systematic uncertainties

I High number of bunches and small distance between bunches
→ Beam crossing angle: 30 mrad (FCC-ee)/33 mrad(CEPC)

I Very high data rates (physics rates 100 kHz)
→ Requirements on readout
→ Triggerless readout can still be possible

I Backgrounds
I Synchroton radiation, beamstrahlung, backgrounds from beam losses, etc.
→ Adapt detector and machine-detector interface
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Circ. e+e− colliders: Machine-detector interface
I High luminosities: last focusing quadrupole QC1 very close to IP

I L∗ ≈ 2.2 m @ FCC-ee and CEPC → QC1 inside detector volume
I Protect QC1 from main magnetic field of detector

I Screening solenoid around QC1
I Compensating solenoid: prevent beam emittance blow-up in detector B

field due to non-zero crossing angle

→ Lumical at only 1 m
from interaction point

→ Limits detector acceptance
window

→ Limits magnetic field of main
solenoid: B=2 T at FCC-ee
→ Relatively large tracker

radius to achieve good
momentum resolution

FCC-ee forward detector region
(expanded xy-direction)

I Limit on magnetic field of main solenoid varies with
√

s
I Larger B would require thicker main magnet coil → impact on detector
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Circ. e+e− colliders: Machine-detector interface
I High luminosities: last focusing quadrupole QC1 very close to IP

I L∗ ≈ 2.2 m @ FCC-ee and CEPC → QC1 inside detector volume
I Protect QC1 from main magnetic field of detector

I Screening solenoid around QC1
I Compensating solenoid: prevent beam emittance blow-up in detector B

field due to non-zero crossing angle

→ Lumical at only 1 m
from interaction point

→ Limits detector acceptance
window

→ Limits magnetic field of main
solenoid: B=2 T at FCC-ee
→ Relatively large tracker

radius to achieve good
momentum resolution

CEPC forward detector region
(expanded xy-direction)

I Limit on magnetic field of main solenoid varies with
√

s
I Larger B would require thicker main magnet coil → impact on detector
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Circular e+e− colliders: Shielding and cooling

I W shielding inside of detector region to prevent synchrotron
radiation/secondary radiation to enter the sub-detectors

I Beam pipe
I Heating, liquid cooled → increased material budget at the IP
I Be in central region, then Cu

FCC-ee detector: 2D-top view with expanded y-coordinate

Central detector region
Compensating solenoid
Lumical
QC1
HOM absorber
Pumps
Shielding
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Circular e+e− colliders: Shielding and cooling

I W shielding inside of detector region to prevent synchrotron
radiation/secondary radiation to enter the sub-detectors

I Beam pipe
I Heating, liquid cooled → increased material budget at the IP
I Be in central region, then Cu

CEPC detector: 2D-top view with expanded y-coordinate
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Linear e+e− colliders: Beam parameters (1)

Property Unit ILC CLIC√
s GeV 250 250(Upg.) 500 380(upg.) 1500 3000

Train rep. rate Hz 5 5/10 5 50/100 50 50
BX / train 1312 2625 1312/2625 356 312 312
Bunch sep. ns 554 272 544/272 0.5 0.5 0.5
Duty cycle ‰ 3.6 7.2 3.6/7.2 0.0089/ 0.0078 0.0078

0.0178

I Linear colliders operate in bunch trains
→ Low duty cycle
→ Possibility of power pulsing of detectors and triggerless readout
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Linear e+e− colliders: Beam parameters (2)

Property Unit ILC CLIC√
s GeV 250 250(Upg.) 500 380(Upg.) 1500 3000

Site length km 20.5 20.5/31 31 11.4 29.0 50.1

Luminosity 1034/cm2s 1.35 2.7/5.4 1.8/3.6 1.5/3 3.7 5.9
Bunch sep. ns 554 272 544/272 0.5 0.5 0.5
Beam σxy, IP nm/nm 516/7.7 516/7.7 474/5.9 149/2.9 ∼60/1.5 ∼40/1
Beam σz, IP µm 300 300 300 70 44 44

ILC: Crossing angle 14 mrad, electron polarization ±80%, positron polarization ±30%,
CLIC: Crossing angle 20 mrad, electron polarization ±80%, upgrade positron polarization

I Bunch separation → Impact on detector design (timing, granularity)

I Very small beams and high beam energy → beamstrahlung

γγ → hadrons
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Linear e+e− colliders: Beamstrahlung
Impact on layout, granularity, shielding

NCharged particles/mm2/bunch crossing @ 3 TeV CLIC:
Zoom into vertex detector region

I Adapt detector layout, granularity, shielding, timing requirements
I Radius of beam pipe and first vertex detector layer: ∼ 3 cm @ 3 TeV
I Thicker beam-pipe in forward direction: shielding for back scattered particles
I Timing requirements: 5 ns for CLIC vertex and tracking detectors

I Timing also useful for ILC, FCC, CEPC:
e.g. distinguish direct energy deposits from back scattering ones
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Muon collider: Key parameters

Proton driven muon collider (MAP collaboration)

I Luminosity at 3 TeV similar to CLIC (4.4 versus 5.9× 1034/cm2s)
I Luminosity per wall plug power increases for muon colliders
→ reach O(10 TeV)

I Luminosity increases with energy quadratically (beam size reduction)
I Each

√
s foreseen in individual collider of few kilometres
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Muon colliders: Neutrino background

I In-flight muon decay
I Neutrino continue in beam direction
I Straight sections: neutrinos emerge in spot-like area

I Secondary hadronic interactions from initial neutrinos pose radiation hazard
where the neutrino beam reaches earth surface
→ Dose in continuation of straight sections particularly high

I Radiation limit to population below 0.1 mSv/y

I Dose scales with energy following ∼ E 3
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Muon colliders: detector background

Beam induced background @ 1.5 TeV: Simulation

I Muons decay also near detector region
e.g. @ 750 GeV, 2× 1012

µ per bunch: 4× 105 decays/m/bunch
I e± inside accelerator magnets → Synchroton radiation (γ)
I El.-mag. showers from e± and γ interact with the machine components
→ Photons, neutrons, electrons, charged hadrons and secondary muons

reaching detector region

I Collimation, shielding and timing requirements for detector design
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Detectors
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FCC-hh reference detector (100 TeV)

∼50 m

∼20.0 m

I Silicon tracker

I Barrel ECAL LAr

I Endcap and forward
HCAL/ECAL LAr

I Barrel HCAL Fe/Sci

I Central solenoid (4 T,
> 10 m diameter),
two forward solenoids,
unshielded

I Muon system
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Tracking in FCC-hh detector

I Two tracker options studied: “Tilted” and “flat”, each O(400 m2)
I Tilted layout reduces material budget → improves reconstruction efficiency

I High occupancies
I Small cells sizes (∼ 25× 50 µm2 in inner layers)

I Two-track separation in boosted objects
I Small cell sizes + hit resolution < 5 µm + O(5 ps) time resolution

I High-E → significant fraction of displaced vertices outside acceptance
I Radiation levels 100× higher than present silicon technologies can sustain
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Calorimetry in FCC-hh detector

I Sampling calorimeters for FCC-hh:
Liquid Argon (LAr) and Scintillator

I LAr only known technology for extreme
radiation regions, requires development
towards high granularity →particle flow analyis

I Silicon alternative for lower radiation regions

Requirements at 100 TeV
I Depth: ≥ 30 X0, ≥ 11 λI

I High longitudinal and lateral
segmentation

I Coverage up to |η| = 6

I Excellent resolution and
linearity from GeV to
multi-TeV (e.g. 1% mass
resolution for H → γγ/4e)

I Timing O(30 ps) → pile-up
reduction by factor 6

I Dynamic range:
per-cell deposits from MIPs
to heavy resonances up to
50 TeV
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Linear e+e−collider detectors (up to 3 TeV)
CLIC: CLICdet

11.4 m

12.8 m

I 3.5–5 T solenoids

I CLICdet and SiD: all silicon tracker;
ILD: Time Projection Chamber

I Vertex and tracking detector with
very low material budget and
unprecedented spatial resolution

I Highly granular calorimeters

I Forward calorimeters

I Muon system in return yoke

I Power pulsing possible due to low
duty circle

ILC: SiD ILC: ILD

January 27, 2020 Eva Sicking: Detector requirements for future colliders 31



Circular e+e−collider detectors (up to 365 GeV)
FCC-ee: CLD

10.6 m

12.0 m

CEPC: Baseline

FCC-ee and CEPC: IDEA

I 2 T FCC-ee, 2–3 T CEPC

I Large tracker radius in case of lower
magnetic field

I CLD: All silicon tracker,
Baseline: TPC, IDEA: Drift chamber

I Highly granular calorimeter or
dual readout calorimeter

I Forward calorimeters
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Muon collider detectors

MAP (Muon Accelerator Programme)
detector I Detector used for first background

and performance studies
I Magnetic coil 3.57 T
I Silicon based vertex and

tracking detectors
I Dual readout calorimeter
I Muon system

I Mitigate beam-induced
backgrounds

I Tungsten-polyethylene nozzles
for background mitigation inside
the detector

I O(ps) time resolution for
background suppression
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Comparison: Silicon tracking detectors

Silicon vertex and tracking detector parameters

Hadron colliders
I Very high radiation levels: ≤ 1018neq/cm2

I Very high hit rates

I Very precise timing: ≤O(5 ps)

Lepton colliders
I Very small single point resolution (≤ 3 µm)

I Very low material budget
(≤ 0.2%X0/layer)

Remarks
I Note that ps-level timing was not part of

initial HL-LHC detector requirements

I Became available through pioneering R&D
on LGAD / MCP / precise timing with
silicon

I Now well motivated for vertex separation /
pattern reconstruction
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Particle flow calorimetry

I Average jet composition
I 60% charged particles

30% photons
10% neutral hadrons

I Always use the best
information

I 60% → tracker ,
30% → ECAL ,
10% → HCAL /

I Particle Flow Analysis:
Hardware + Software

I Hardware: Resolve energy deposits
from different particles
→ High granularity calorimeters

Ejet=EECAL+EHCAL

I Software: Identify energy deposits
from each individual particle
→ Sophisticated reconstruction software

Ejet=Etrack+Eγ +En

→

→
π

+ nγ
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Particle flow calorimeters

I Separate overlapping showers to reduce confusion

σjet =
√

σ
2
track + σ

2
el.-m. + σ

2
had. + σ

2
confusion

I JER of 3%–4% when using Example: Calorimeter in ILD

→ ECAL cell size: ∼ 5× 5 mm2 → 108channels, 2500 m2 Silicon
→ HCAL cell size: ∼ 30× 30 mm2 → 107channels, 7000 m2 Scintil.

I Hardware R&D for highly granular calorimeters: CALICE collaboration

I Concept by now under consideraton for ILC, CLIC, FCC-ee, CEPC, FCC-hh,
CMS HGCal, DUNE ND

CALICE silicon PIN diodes
1× 1 cm2 in 6× 6 matrices

CALICE/CMS HGCal scint. tiles

+ SiPMs 3× 3 cm2
CMS HGCal silicon pad diodes
0.5− 1 cm2, on 8-inch wafer
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Background suppression
I Highly granular calorimeter + hit timing O(1 ns)
I Use combined pT and timing cuts on fully reconstructed particles

to reduce out-of-time background
I Cuts optimised for detector regions
I Cluster timing by combining hit timing information
→ tighter cuts possible on cluster timing

Before pT and timing cuts

e+e− → ttH → Wb Wb H → qqb τνb bb at 1.4 TeV at CLIC

January 27, 2020 Eva Sicking: Detector requirements for future colliders 37



Background suppression
I Highly granular calorimeter + hit timing O(1 ns)
I Use combined pT and timing cuts on fully reconstructed particles

to reduce out-of-time background
I Cuts optimised for detector regions
I Cluster timing by combining hit timing information
→ tighter cuts possible on cluster timing

After pT and timing cuts

e+e− → ttH → Wb Wb H → qqb τνb bb at 1.4 TeV at CLIC

January 27, 2020 Eva Sicking: Detector requirements for future colliders 37



Summary
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Summary: pp collider detector challenges
Radiation levels

I Tracker: radiation for < 40 cm radius of the tracker is 100 times larger than what present
silicon sensors can sustain

I Calorimeter:
Liquid Argon is only viable known technology, requires development towards high granularity;
silicon or scintillator technologies could be used in regions with lower radiation levels

Activation
I Impact on access conditions after several years of operation → maximise automated access
I Engineering challenge

Pile-up and boost
I Requires much increased granularity in most regions of the detector
I High precision timing required (∼ 5 ps per track) and computing power for reconstruction,

both significantly above HL-LHC
I Very accurate tracker hit position resolution (< 5 µm), for 2-track separation in boosted

objects
I Forward coverage

Data rate
I High collision rate and high granularity
→ Data rate of 1-2 Pbyte/s, mostly dominated by the tracker
→ Studies to be done whether this is possible and which level of triggering is required

Magnet systems
I Very large solenoid bore diameter of 10 m (6 m in CMS)
I Unshielded coil in baseline design → Stray field in cavern
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Summary: e+e− collider detector challenges

Vertex detector and silicon tracker
I High spatial resolution (∼ 3 µm, ∼ 7 µm,), very low mass, O(5 ns) hit timing (3 TeV CLIC)

I Linear Colliders: Engineering challenge to combine low mass with air cooling

I Circular Colliders: Maintain low mass for position resolution without power pulsing

Particle Flow Calorimetry
I Much experience gained through CALICE; CMS HGCal will be a benchmark

I Very large area of silicon for ECAL → cost driver

Power pulsing
I Much experience gained with laboratory set-ups, and in CALICE prototypes

I Power pulsing not yet tested at system level for vertex and tracking detectors

I Power pulsing can become an obstacle for e.g. cosmic ray calibration

Systematics on energy scale, luminosity measurement, calibration
I Keep systematics below level of statistical errors

I Most challenging at Z-peak, but also for top quark mass and per-mille level Higgs couplings
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Summary: µ
+

µ
− collider detector challenges

Muon decays
I Neutrino radiation hazard on earth surface

I Muon-decay induced backgrounds in detector → shielding, timing capabilities: O(ps)

SM event topologies
I Significant forward boost of Higgs events for O(10 TeV) collisions
→ New reconstruction challenges

January 27, 2020 Eva Sicking: Detector requirements for future colliders 41




	Future high-energy collider proposals
	Physics programmes
	Experiemental conditions
	Detectors
	Summary

