Detector requirements for future high-energy collider experiments

Eva Sicking (CERN)

8th Beam Telescopes and Test Beams Workshop
January 27, 2020 – Tbilisi State University, Georgia

With material from Lucie Linssen, Mogens Dam, Werner Riegler, Daniel Schulte, Konrad Elsener, Emilia Leogrande, Oleksandr Viazlo, Coralie Neubüser, Donatella Lucchesi, Barbara Mele, Jie Gao, Michael Benedikt, Michael Koratzinos, Manuela Boscolo, Andrea Wulzer
Detector requirements for future high-energy \(pp, e^+e^- \) and \(\mu^+\mu^- \) collider experiments

(ep, PbPb and pPb colliders not covered in this talk)

- Facilities under study
 - Hadron (pp) and lepton (\(e^+e^- / \mu^+\mu^- \)) colliders
 - Circular and linear
- Detector design mostly driven by facility-dependent
 - Physics objectives
 - Experimental conditions
- Proposed detector concepts
 - Design choices
 - Detector challenges
Overview:
High-energy collider proposals
High-energy e^+e^- collider proposals

Circular Electron Positron Collider (CEPC)

$\sqrt{s} = 90–240$ GeV; Circumference: 100 km

Compact Linear Collider (CLIC)

$\sqrt{s} = 350/380$ GeV, 1.5 TeV, 3 TeV; Length: 11 km, 29 km, 50 km

Future Circular Collider (FCC-ee)

$\sqrt{s} = 90–240$ GeV, 350–365 GeV; Circumference: 97.8 km

International Linear Collider (ILC)

$\sqrt{s} = 250$ GeV, 350/500 GeV (1 TeV); Length: 20.5 km, 31 km (40 km)
High-energy hadron collider proposals

Future Circular Collider (FCC-hh)

\[\sqrt{s} = \sim 100 \text{ TeV} \]

(37.5 TeV with LHC type magnets);

Circumference: 97.8 km

High Energy-LHC

\[\sqrt{s} = 27 \text{ TeV}; \]

Length: 27 km

Super Proton Proton Collider (SppC)

\[\sqrt{s} = \sim 75 \text{ TeV} \]

(125–150 TeV “ultimate”);

Circumference: 100 km
High-energy muon collider proposals

Muon colliders $\sqrt{s} = \text{up to } 10\text{ TeV}$;
Circumference: few km
(+ larger pre-accelerator complex)
Example: MAP-MC: 126 GeV – 6 TeV

Low EMMittance Muon Accelerator (LEMMA):
10^{11} μ pairs/sec from e^+e^- interactions. The small production emittance allows lower overall charge in the collider rings – hence, lower backgrounds in a collider detector and a higher potential CoM energy due to neutrino radiation.
Future collider projects

Time lines

<table>
<thead>
<tr>
<th></th>
<th>T_0</th>
<th>+5</th>
<th>+10</th>
<th>+15</th>
<th>+20</th>
<th>...</th>
<th>+26</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILC</td>
<td>0.5/ab 250 GeV</td>
<td>1.5/ab 250 GeV</td>
<td>1.0/ab 500 GeV</td>
<td>0.2/ab $2m_{top}$</td>
<td>3/ab 500 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEPC</td>
<td>5.6/ab 240 GeV</td>
<td>16/ab M_z</td>
<td>2.6/ab $2M_w$</td>
<td></td>
<td></td>
<td>SppC =></td>
<td></td>
</tr>
<tr>
<td>CLIC</td>
<td>1.0/ab 380 GeV</td>
<td>2.5/ab 1.5 TeV</td>
<td>5.0/ab => until +28 3.0 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCC</td>
<td>150/ab ee, M_z</td>
<td>10/ab ee, $2M_w$</td>
<td>5/ab ee, 240 GeV</td>
<td>1.7/ab ee, $2m_{top}$</td>
<td></td>
<td>hh,eh =></td>
<td></td>
</tr>
<tr>
<td>LHeC</td>
<td>0.06/ab</td>
<td>0.2/ab</td>
<td>0.72/ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE-LHC</td>
<td></td>
<td>10/ab per experiment in 20y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCC hh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20/ab per experiment in 25y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Near future proposals** (excluding ep colliders LHeC, EIC):
 - e^+e^- colliders (ILC, CEPC, CLIC, FCC-ee)
 - Low-energy FCC-hh (using LHC-type magnets in FCC tunnel: 37.5 TeV)

- **Proposals for more distant future**
 - Hadron colliders with high-field (\sim 16 T) magnets (HE-LHC, FCC-hh, SppC)
 → Require further magnet development
 - Muon colliders
 → Require further studies towards design reports
 - Linear e^+e^- colliders with dielectric or plasma-wake-field acceleration
 → Require further studies towards design reports
Physics programmes

→ Detector requirements
High-energy hadron & lepton colliders

→ Aspects relevant for detector design

1) Hadrons are compound objects
 ▶ Initial state unknown
 ▶ Limits achievable precision
 → More relaxed accuracy requirements on detectors

2) High rates of QCD backgrounds
 ▶ Complex triggers
 ▶ High levels of radiation

3) Strong forward boost

4) O(10 ps) timing requirement (minimum bias)

Lepton colliders (e^+e^- / μ^+μ^-)

1) Leptons are point-like
 ▶ Initial state well-defined
 ▶ High-precision measurements
 → Very high accuracy requirements on detectors

2) Clean experimental environment
 ▶ Less/no need for triggers
 ▶ Lower radiation levels

3) Less forward boost (increase with s)

4) No or O(1 ns) timing requirement (beam background)
In hadron collisions, interesting events need to be found in huge number of collisions

Lepton collisions more clean

pp cross section

e^+ e^- processes

- **Factor > 10^8**
\(\mu^+\mu^- \): BSM searches and SM cross sections

- \(\mu^\pm \) less prone to synchrotron radiation: \(\Delta E \sim E^4/(m^4 \cdot R) \) \((m_\mu = 207 m_e) \)
 \(\rightarrow \) potential to reach \(O(10 \text{ TeV}) \) in circular collider of modest circumference

Selected SM \(\mu^+\mu^- \) cross sections

- Similar SM cross sections in e\(^+\)e\(^-\) and \(\mu^+\mu^- \) (apart from QED-radiation and small Yukawa effects)
- Cross section for many Higgs production processes increases with \(\sqrt{s} \rightarrow \) large Higgs samples

Equivalent parton centre-of-mass energy

- In pp collisions, \(\sqrt{s_{\text{parton-parton}}} \ll \sqrt{s_{pp}} \)
- “Equivalent” reach at
 - \(\sqrt{s_{\mu^+\mu^-}} = 14 \text{ TeV} \) and \(\sqrt{s_{pp}} = 100 \text{ TeV} \)
- Searches in \(\mu^+\mu^- \rightarrow ff \) up to \(m_f \leq \sqrt{s_{\mu^+\mu^-}} / 2 \)
Luminosities and energy reach: e^+e^-

- **Circular e^+e^- colliders**
 - Extremely high luminosities at low energies (Z, WW, ZH)
- **Linear e^+e^- colliders**
 - High centre of mass energies ($t\bar{t}$, ZH, $H\nu\nu$, double Higgs, direct searches)
 - Beam polarisation \rightarrow characterisation of new particles or processes in detail
- **Circular and linear e^+e^- colliders**
 - Comparable luminosities in overlap region (ZH, $t\bar{t}$)

January 27, 2020
Eva Sicking: Detector requirements for future colliders
Luminosities and energy reach: e^+e^- and $\mu^+\mu^-$

- Circular e^+e^- colliders
 - Extremely high luminosities at low energies (Z, WW, ZH)

- Linear e^+e^- colliders
 - High centre of mass energies (t\bar{t}, ZH, H\nu\nu, double Higgs, direct searches)
 - Beam polarisation \rightarrow characterisation of new particles or processes in detail

- Circular and linear e^+e^- colliders
 - Comparable luminosities in overlap region (ZH, t\bar{t})

- Muon collider: reach multi-TeV energies
LC e^+e^- detector performance requirements

- **Momentum resolution**
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons
 - \(\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \text{GeV}^{-1} \)

- **Impact parameter resolution**
 - c/b-tagging, Higgs branching ratios
 - \(\sigma_{r\phi} \sim a \oplus b/(p[\text{GeV}] \sin^{3/2} \theta) \mu m \)
 - \(a = 5 \mu m, \quad b = 10 - 15 \mu m \)

- **Jet energy resolution**
 - Separation of W/Z/H di-jets, Z and W width, HZ with Z \(\rightarrow q\bar{q} \), background reduction
 - \(\sigma_E/E \sim 3.5\% \)
 - (for high-energy jets, light quarks)

- **Angular coverage**
 - Very forward electron and photon tagging

+ Requirements from beam structure and beam-induced background
LC e^+e^- detector performance requirements

- Momentum resolution
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons
 \[\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5}\text{GeV}^{-1} \]

- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 \[\sigma_{r\phi} \sim a \oplus b/(p[\text{GeV}] \sin^{\frac{3}{2}}\theta)\mu\text{m} \]
 - \(a = 5 \mu\text{m}, \ b = 10 - 15 \mu\text{m} \)

- Jet energy resolution
 - Separation of $W/Z/H$ di-jets, Z and W width, HZ with $Z \rightarrow q\bar{q}$, background reduction
 \[\sigma_E/E \sim 3.5\% \]
 (for high-energy jets, light quarks)

- Angular coverage
 - Very forward electron and photon tagging

+ Requirements from beam structure and beam-induced background

Differences between ILC, CLIC, FCC-ee, CEPC requirements rather small
Experimental conditions
Hadron colliders: Key parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>HE-LHC</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{cm}</td>
<td>TeV</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>Circumference</td>
<td>km</td>
<td>26.7</td>
<td>26.7</td>
<td>26.7</td>
<td>97.8</td>
</tr>
<tr>
<td>Peak \mathcal{L}, nominal (ultimate)</td>
<td>$10^{34} \text{ cm}^{-2} \text{s}^{-1}$</td>
<td>1 (2)</td>
<td>5 (7.5)</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>ns</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Number of bunches</td>
<td></td>
<td>2808</td>
<td>2760</td>
<td>2808</td>
<td>10 600</td>
</tr>
<tr>
<td>Goal $\int \mathcal{L}$</td>
<td>ab$^{-1}$</td>
<td>0.3</td>
<td>3</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>$\sigma_{\text{inel}}[340]$</td>
<td>mb</td>
<td>80</td>
<td>80</td>
<td>86</td>
<td>103</td>
</tr>
<tr>
<td>$\sigma_{\text{tot}}[340]$</td>
<td>mb</td>
<td>108</td>
<td>108</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>BC rate</td>
<td>MHz</td>
<td>31.6</td>
<td>31.0</td>
<td>31.6</td>
<td>32.5</td>
</tr>
<tr>
<td>Peak pp collision rate</td>
<td>GHz</td>
<td>0.8</td>
<td>4</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>Peak av. PU events/BC, nominal (ultimate)</td>
<td></td>
<td>25</td>
<td>130 (200)</td>
<td>435</td>
<td>950</td>
</tr>
<tr>
<td>Rate of charged tracks</td>
<td>GHz</td>
<td>59</td>
<td>297</td>
<td>1234</td>
<td>3942</td>
</tr>
</tbody>
</table>

Example: pp collisions at 100 TeV (FCC-hh)

- **Pileup:** ~ 1000 events/bunch crossing \rightarrow spatial resolution, timing
 - Average distance between vertices: 125 μm (7 times smaller than at HL-LHC)
- **High radiation levels** \rightarrow radiation hardness
 - High luminosity of $30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - pp collision rate of 31 GHz
 - Charged track rate of ~ 4 THz
- **Forward boost** \rightarrow forward coverage
Hadron colliders: Radiation levels

Assuming \(L = 30 \times 10^{34} \text{cm}^{-2}\text{s}^{-1} \) and 30 ab\(^{-1}\)

Neutron equivalent fluence
- \(\sim 10^{18} n_{eq}/\text{cm}^2 \) close to beam pipe,
- \(10^{15} - 10^{16} n_{eq}/\text{cm}^2 \) at \(r > 40 \text{ cm} \) (\(\sim \text{HL-LHC} \))
- Extreme fluence in forward calorimeters
 - Radiation levels 100 times larger than what present silicon sensors can sustain

Residual dose rate
- Dose from activation towards the end of FCC operation
- Here: 1 week of cool-down, similar picture after 1 year
 - Impact on access conditions to experiment after several years of operation
Circular vs. linear e^+e^- colliders: Overview

- **Circular e^+e^- colliders (CC)**
 1. Several interaction regions
 2. Continuous operation
 3. Synchrotron radiation
 4. Beam strahlung

- **Linear e^+e^- colliders (LC)**
 1. One interaction region in linear colliders, alternatives: push-pull scheme or 2 beam-delivery systems (shared lumi.)
 2. Operation in bunch trains
 3. Very little synchrotron radiation in a linac
 4. Have to achieve luminosity in single pass
 → Small beam size and high beam power
 → Beamstrahlung, energy spread

- **Impact on LC/CC detector designs**
 - Shielding
 - Granularity
 - Timing
 - Cooling
Circular e^+e^- colliders: Beam parameters

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>FCC-ee (97.8 km)</th>
<th>CEPC (100 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqrt{s}</td>
<td>GeV</td>
<td>Z</td>
<td>WW</td>
</tr>
<tr>
<td>Lumi./IP</td>
<td>10^{34}/cm2s</td>
<td>230</td>
<td>28</td>
</tr>
<tr>
<td>Bunches/beam</td>
<td>ns</td>
<td>16640</td>
<td>2000</td>
</tr>
<tr>
<td>Bunch sep.</td>
<td>ns</td>
<td>20</td>
<td>163</td>
</tr>
<tr>
<td>Synch.rad. power</td>
<td>MW</td>
<td>\leq 50</td>
<td>\leq 50</td>
</tr>
<tr>
<td>Beam $\sigma_{xy, IP}$</td>
<td>μm/nm</td>
<td>6.4/28</td>
<td>13/41</td>
</tr>
</tbody>
</table>

Beam energy can be measured to very high accuracy (\sim50 keV)

- At Z peak, **high luminosity** combined with high e^+e^- cross section
 - Achieve very low statistical uncertainties ($\sim 10^{-4} - 10^{-5}$)
 → Drives detector performance req. to match systematic uncertainties
 - **High number of bunches and small distance between bunches**
 → Beam crossing angle: 30 mrad (FCC-ee)/33 mrad(CEPC)
 - **Very high data rates** (physics rates 100 kHz)
 → Requirements on readout
 → **Triggerless readout can still be possible**

- **Backgrounds**
 - **Synchrotron radiation**, beamstrahlung, backgrounds from beam losses, etc.
 → Adapt detector and machine-detector interface
Circ. e^+e^- colliders: Machine-detector interface

- High luminosities: last focusing quadrupole QC1 very close to IP
 - $L^* \approx 2.2$ m @ FCC-ee and CEPC \rightarrow QC1 inside detector volume
- Protect QC1 from main magnetic field of detector
 - Screening solenoid around QC1
- Compensating solenoid: prevent beam emittance blow-up in detector B field due to non-zero crossing angle

\rightarrow **Lumical** at only 1 m from interaction point
 - Limits detector acceptance window

\rightarrow Limits magnetic field of main solenoid: $B=2$ T at FCC-ee
 - Relatively large tracker radius to achieve good momentum resolution

\rightarrow Limit on magnetic field of main solenoid varies with \sqrt{s}
\rightarrow Larger B would require thicker main magnet coil \rightarrow impact on detector
Circ. e^+e^- colliders: Machine-detector interface

- High luminosities: last focusing quadrupole QC1 very close to IP
 - \(L^* \approx 2.2 \text{ m} \) @ FCC-ee and CEPC \(\rightarrow \) QC1 inside detector volume
- Protect QC1 from main magnetic field of detector
 - Screening solenoid around QC1
- Compensating solenoid: prevent beam emittance blow-up in detector B field due to non-zero crossing angle

→ Lumical at only 1 m from interaction point
 - Limits detector acceptance window
→ Limits magnetic field of main solenoid: \(B = 2 \text{T} \) at FCC-ee
 - Relatively large tracker radius to achieve good momentum resolution

→ Limit on magnetic field of main solenoid varies with \(\sqrt{s} \)
→ Larger B would require thicker main magnet coil \(\rightarrow \) impact on detector
Circular e^+e^- colliders: Shielding and cooling

- **W shielding** inside of detector region to prevent synchrotron radiation/secondary radiation to enter the sub-detectors

FCC-ee detector: 2D-top view with expanded y-coordinate

- Beam pipe
 - Heating, liquid cooled \rightarrow increased material budget at the IP
 - Be in central region, then Cu
Circular e^+e^- colliders: Shielding and cooling

- **W shielding** inside of detector region to prevent synchrotron radiation/secondary radiation to enter the sub-detectors

CEPC detector: 2D-top view with expanded y-coordinate

- Beam pipe
 - Heating, liquid cooled \rightarrow increased material budget at the IP
 - Be in central region, then Cu
Linear e^+e^- colliders: Beam parameters (1)

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>ILC</th>
<th>CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>250(Upg.)</td>
</tr>
<tr>
<td>√s GeV</td>
<td></td>
<td>250</td>
<td>250(Upg.)</td>
</tr>
<tr>
<td>Train rep. rate</td>
<td>Hz</td>
<td>5</td>
<td>5/10</td>
</tr>
<tr>
<td>BX / train</td>
<td></td>
<td>1312</td>
<td>2625</td>
</tr>
<tr>
<td>Bunch sep.</td>
<td>ns</td>
<td>554</td>
<td>272</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>%</td>
<td>3.6</td>
<td>7.2</td>
</tr>
</tbody>
</table>

- Linear colliders operate in bunch trains
 - **Low duty cycle**
 - Possibility of power pulsing of detectors and triggerless readout

Beam structure: CLIC@3TeV/ILC@500GeV

![Beam structure diagram](Not to scale)
Linear e^+e^- colliders: Beam parameters (2)

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>ILC</th>
<th></th>
<th>CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqrt{s}</td>
<td>GeV</td>
<td>250</td>
<td>250(Upg.)</td>
<td>500</td>
</tr>
<tr>
<td>Site length</td>
<td>km</td>
<td>20.5</td>
<td>20.5/31</td>
<td>31</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$10^{34}/cm^2s$</td>
<td>1.35</td>
<td>2.7/5.4</td>
<td>1.8/3.6</td>
</tr>
<tr>
<td>Bunch sep.</td>
<td>ns</td>
<td>554</td>
<td>272</td>
<td>544/272</td>
</tr>
<tr>
<td>Beam $\sigma_{xy,\text{IP}}$</td>
<td>nm/nm</td>
<td>516/7.7</td>
<td>516/7.7</td>
<td>474/5.9</td>
</tr>
<tr>
<td>Beam $\sigma_{z,\text{IP}}$</td>
<td>μm</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>ILC: Crossing angle 14 mrad, electron polarization $\pm80%$, positron polarization $\pm30%$,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIC: Crossing angle 20 mrad, electron polarization $\pm80%$, upgrade positron polarization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bunch separation** → Impact on detector design (timing, granularity)
- **Very small beams** and high beam energy → beamstrahlung
Linear e^+e^- colliders: Beamstrahlung
Impact on layout, granularity, shielding

$N_{\text{Charged particles/mm}^2/\text{bunch crossing}} @ 3 \text{ TeV CLIC}$:
Zoom into vertex detector region

- Adapt detector layout, granularity, shielding, timing requirements
 - Radius of beam pipe and first vertex detector layer: $\sim 3 \text{ cm @ 3 TeV}$
 - Thicker beam-pipe in forward direction: shielding for back scattered particles
 - Timing requirements: 5 ns for CLIC vertex and tracking detectors

- Timing also useful for ILC, FCC, CEPC:
 e.g. distinguish direct energy deposits from back scattering ones
Muon collider: Key parameters

Proton driven muon collider (MAP collaboration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Higgs</th>
<th>Multi-TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoM Energy</td>
<td>TeV</td>
<td>0.126</td>
<td>1.5</td>
</tr>
<tr>
<td>Avg. Luminosity</td>
<td>10^{34}cm$^{-2}$s$^{-1}$</td>
<td>0.008</td>
<td>1.25</td>
</tr>
<tr>
<td>Beam Energy Spread</td>
<td>%</td>
<td>0.004</td>
<td>0.1</td>
</tr>
<tr>
<td>Higgs Production/107 sec</td>
<td></td>
<td>13’500</td>
<td>37’500</td>
</tr>
<tr>
<td>Circumference</td>
<td>km</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>No. of IP’s</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>Hz</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>$\beta^{*}_{x,y}$</td>
<td>cm</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>No. muons/bunch</td>
<td>10^{12}</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Norm. Trans. Emittance, ε_{TN}</td>
<td>μm-rad</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>Norm. Long. Emittance, ε_{LN}</td>
<td>μm-rad</td>
<td>1.5</td>
<td>70</td>
</tr>
<tr>
<td>Bunch Length, σ_s</td>
<td>cm</td>
<td>6.3</td>
<td>1</td>
</tr>
<tr>
<td>Proton Driver Power</td>
<td>MW</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Wall Plug Power</td>
<td>MW</td>
<td>200</td>
<td>216</td>
</tr>
</tbody>
</table>

- **Luminosity at 3 TeV similar to CLIC** (4.4 versus 5.9×10^{34}/cm2/s)
- **Luminosity per wall plug power increases for muon colliders**
 \[\rightarrow \text{reach O(10 TeV)} \]
- **Luminosity increases with energy quadratically (beam size reduction)**
- **Each \sqrt{s} foreseen in individual collider of few kilometres**
Muon colliders: Neutrino background

- In-flight muon decay
 - Neutrino continue in beam direction
 - Straight sections: neutrinos emerge in spot-like area

![Diagram showing muon decay and neutrino interactions]

- Secondary hadronic interactions from initial neutrinos pose radiation hazard where the neutrino beam reaches earth surface
 → Dose in continuation of straight sections particularly high
- Radiation limit to population below 0.1 mSv/y

- Dose scales with energy following $\sim E^3$
Muons decay also near detector region
e.g. @ 750 GeV, $2 \times 10^{12} \mu$ per bunch: 4×10^5 decays/m/bunch
- e^\pm inside accelerator magnets \rightarrow Synchroton radiation (γ)
- El.-mag. showers from e^\pm and γ interact with the machine components
 \rightarrow Photons, neutrons, electrons, charged hadrons and secondary muons reaching detector region

- Collimation, shielding and timing requirements for detector design
Detectors
FCC-hh reference detector (100 TeV)

- Silicon tracker
- Barrel ECAL LAr
- Endcap and forward HCAL/ECAL LAr
- Barrel HCAL Fe/Sci
- Central solenoid (4 T, > 10 m diameter), two forward solenoids, unshielded
- Muon system
Two tracker options studied: “Tilted” and “flat”, each $O(400 \text{ m}^2)$

- Tilted layout reduces material budget \rightarrow improves reconstruction efficiency

- High occupancies
 - Small cells sizes ($\sim 25 \times 50 \mu\text{m}^2$ in inner layers)

- Two-track separation in boosted objects
 - Small cell sizes + hit resolution $< 5 \mu\text{m} + O(5 \text{ ps})$ time resolution

- High-E \rightarrow significant fraction of displaced vertices outside acceptance

- Radiation levels $100\times$ higher than present silicon technologies can sustain
Calorimetry in FCC-hh detector

Requirements at 100 TeV
- Depth: $\geq 30 X_0$, $\geq 11 \lambda_I$
- High longitudinal and lateral segmentation
- Coverage up to $|\eta| = 6$
- Excellent resolution and linearity from GeV to multi-TeV (e.g. 1% mass resolution for $H \rightarrow \gamma\gamma/4e$)
- Timing $O(30 \text{ ps}) \rightarrow$ pile-up reduction by factor 6
- Dynamic range: per-cell deposits from MIPs to heavy resonances up to 50 TeV

- Sampling calorimeters for FCC-hh: Liquid Argon (LAr) and Scintillator
- LAr only known technology for extreme radiation regions, requires development towards high granularity \rightarrow particle flow analysis
- Silicon alternative for lower radiation regions

arXiv:1912.09962
January 27, 2020
Linear e^+e^- collider detectors (up to 3 TeV)

- 3.5–5 T solenoids
- CLICdet and SiD: all silicon tracker; ILD: Time Projection Chamber
- Vertex and tracking detector with very low material budget and unprecedented spatial resolution
- Highly granular calorimeters
- Forward calorimeters
- Muon system in return yoke
- Power pulsing possible due to low duty circle
Circular e^+e^- collider detectors (up to 365 GeV)

- 2 T FCC-ee, 2–3 T CEPC
- Large tracker radius in case of lower magnetic field
- CLD: All silicon tracker,
 Baseline: TPC, IDEA: Drift chamber
- Highly granular calorimeter or dual readout calorimeter
- Forward calorimeters
Muon collider detectors

MAP (Muon Accelerator Programme) detector

- Detector used for first background and performance studies
 - Magnetic coil 3.57 T
 - Silicon based vertex and tracking detectors
 - Dual readout calorimeter
 - Muon system

- Mitigate beam-induced backgrounds
 - Tungsten-polyethylene nozzles for background mitigation inside the detector
 - O(ps) time resolution for background suppression
Comparison: Silicon tracking detectors

Silicon vertex and tracking detector parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exp.</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>FCC-hh</th>
<th>FCC-ee</th>
<th>CLIC 3 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluence ([n_{eq}/cm^2/y])</td>
<td>N x 10^{15}</td>
<td>10^{16}</td>
<td></td>
<td>10^{16}-10^{17}</td>
<td><10^{10}</td>
<td><10^{11}</td>
</tr>
<tr>
<td>Max. hit rate ([s^{-1}cm^{-2}])</td>
<td>100 M</td>
<td>2-4 G****</td>
<td></td>
<td>20 G</td>
<td>20 M ***</td>
<td>240k</td>
</tr>
<tr>
<td>Surface inner tracker ([m^2])</td>
<td>2</td>
<td>10</td>
<td></td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Surface outer tracker ([m^2])</td>
<td>200</td>
<td>200</td>
<td></td>
<td>400</td>
<td>200</td>
<td>140</td>
</tr>
<tr>
<td>Material budget per detection layer ([X_0])</td>
<td>0.3%-2%</td>
<td>0.1%-2%</td>
<td></td>
<td>1%</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Pixel size inner layers ([\mu m^2])</td>
<td>100x150-50x400</td>
<td>~50x50</td>
<td></td>
<td>25x50</td>
<td>25x25</td>
<td>~25x25</td>
</tr>
<tr>
<td>BC spacing ([ns])</td>
<td>25</td>
<td>25</td>
<td></td>
<td>25</td>
<td>20-3400</td>
<td>0.5</td>
</tr>
<tr>
<td>Hit time resolution ([ns])</td>
<td>~25-1k)</td>
<td>~0.2**-1k)</td>
<td>~1k**</td>
<td>~10^{-2}</td>
<td>~1k***</td>
<td>~5</td>
</tr>
</tbody>
</table>

* ALICE requirement
** LHCb requirement
*** At Z-pole running
****) max. output rate for LHCb/high intensity flavour experiments: 300-400 Gbit/s/cm^2

Hadron colliders
- Very high radiation levels: \(\leq 10^{18} n_{eq}/cm^2\)
- Very high hit rates
- Very precise timing: \(\leq O(5 \text{ ps})\)

Lepton colliders
- Very small single point resolution \((\leq 3 \mu m)\)
- Very low material budget \((\leq 0.2X_0/\text{layer})\)

Remarks
- Note that ps-level timing was not part of initial HL-LHC detector requirements
- Became available through pioneering R&D on LGAD / MCP / precise timing with silicon
- Now well motivated for vertex separation / pattern reconstruction
Particle flow calorimetry

- Average jet composition
 - 60% charged particles
 - 30% photons
 - 10% neutral hadrons

- Always use the best information
 - 60% → tracker
 - 30% → ECAL
 - 10% → HCAL

- Particle Flow Analysis: Hardware + Software

- **Hardware**: Resolve energy deposits from different particles
 → High granularity calorimeters
 \[E_{\text{jet}} = E_{\text{ECAL}} + E_{\text{HCAL}} \]

- **Software**: Identify energy deposits from each individual particle
 → Sophisticated reconstruction software
 \[E_{\text{jet}} = E_{\text{track}} + E_{\gamma} + E_{n} \]
Particle flow calorimeters

- Separate overlapping showers to reduce confusion

\[\sigma_{\text{jet}} = \sqrt{\sigma_{\text{track}}^2 + \sigma_{\text{el.-m.}}^2 + \sigma_{\text{had.}}^2 + \sigma_{\text{confusion}}^2} \]

- JER of 3%–4% when using
 - ECAL cell size: \(\sim 5 \times 5 \text{ mm}^2 \)
 - HCAL cell size: \(\sim 30 \times 30 \text{ mm}^2 \)

 Example: Calorimeter in ILD
 - \(10^8 \) channels, 2500 m\(^2\) Silicon
 - \(10^7 \) channels, 7000 m\(^2\) Scintil.

- Hardware R&D for highly granular calorimeters: CALICE collaboration
- Concept by now under consideration for ILC, CLIC, FCC-ee, CEPC, FCC-hh, CMS HGCal, DUNE ND

CALICE silicon PIN diodes
1 \(\times \) 1 cm\(^2\) in 6 \(\times \) 6 matrices

CALICE/CMS HGCal scint. tiles + SiPMs
3 \(\times \) 3 cm\(^2\)

CMS HGCal silicon pad diodes
0.5 – 1 cm\(^2\), on 8-inch wafer
Background suppression

- Highly granular calorimeter + hit timing $O(1\,\text{ns})$
- Use combined p_T and timing cuts on fully reconstructed particles to reduce out-of-time background
 - Cuts optimised for detector regions
 - Cluster timing by combining hit timing information
 \rightarrow tighter cuts possible on cluster timing

Before p_T and timing cuts

$e^+e^- \rightarrow t\bar{t}H \rightarrow Wb\bar{W}\bar{b}H \rightarrow q\bar{q}b\tau\bar{b}b\bar{b}$ at 1.4 TeV at CLIC
Background suppression

- High granular calorimeter + hit timing $O(1\,\text{ns})$
- Use combined p_T and timing cuts on fully reconstructed particles to reduce out-of-time background
 - Cuts optimised for detector regions
 - Cluster timing by combining hit timing information → tighter cuts possible on cluster timing

After p_T and timing cuts

$e^+e^- \rightarrow t\bar{t}H \rightarrow WbWbH \rightarrow q\bar{q}b\tau\bar{b}b\bar{b}$ at 1.4 TeV at CLIC
Summary
Summary: pp collider detector challenges

Radiation levels
- Tracker: radiation for < 40 cm radius of the tracker is 100 times larger than what present silicon sensors can sustain
- Calorimeter: Liquid Argon is only viable known technology, requires development towards high granularity; silicon or scintillator technologies could be used in regions with lower radiation levels

Activation
- Impact on access conditions after several years of operation → maximise automated access
- Engineering challenge

Pile-up and boost
- Requires much increased granularity in most regions of the detector
- High precision timing required (≈ 5 ps per track) and computing power for reconstruction, both significantly above HL-LHC
- Very accurate tracker hit position resolution (< 5 µm), for 2-track separation in boosted objects
- Forward coverage

Data rate
- High collision rate and high granularity
 → Data rate of 1-2 Pbyte/s, mostly dominated by the tracker
 → Studies to be done whether this is possible and which level of triggering is required

Magnet systems
- Very large solenoid bore diameter of 10 m (6 m in CMS)
- Unshielded coil in baseline design → Stray field in cavern
Summary: e⁺e⁻ collider detector challenges

Vertex detector and silicon tracker
- High spatial resolution ($\sim 3\,\mu m$, $\sim 7\,\mu m$), very low mass, $O(5\,\text{ns})$ hit timing (3 TeV CLIC)
- Linear Colliders: Engineering challenge to combine low mass with air cooling
- Circular Colliders: Maintain low mass for position resolution without power pulsing

Particle Flow Calorimetry
- Much experience gained through CALICE; CMS HGCAL will be a benchmark
- Very large area of silicon for ECAL \rightarrow cost driver

Power pulsing
- Much experience gained with laboratory set-ups, and in CALICE prototypes
- Power pulsing not yet tested at system level for vertex and tracking detectors
- Power pulsing can become an obstacle for e.g. cosmic ray calibration

Systematics on energy scale, luminosity measurement, calibration
- Keep systematics below level of statistical errors
- Most challenging at Z-peak, but also for top quark mass and per-mille level Higgs couplings
Summary: $\mu^+ \mu^-$ collider detector challenges

Muon decays
- Neutrino radiation hazard on earth surface
- Muon-decay induced backgrounds in detector \rightarrow shielding, timing capabilities: $O(\text{ps})$

SM event topologies
- Significant forward boost of Higgs events for $O(10 \, \text{TeV})$ collisions
 \rightarrow New reconstruction challenges