Swedish contribution to ATLAS upgrades

Geoffrey Mullier on behalf of the ATLAS Swedish institutes

Lund University

Partikeldagarna – Linköping – 2/10/2019

Challenges of the High Luminosity LHC (HL-LHC)?

23 simultaneous events

230 simultaneous events

Increase in pileup means a need for

- → More bandwidth
- → Higher granularity
- → Higher radiation damage resiliency
- → Better triggering capabilities

ATLAS Upgrade program Full overview in scoping document (click me)

ATLAS Upgrade program Full overview in scoping document (click me)

The ATLAS Inner TracKer (ITk) (Click me)

- New ATLAS Tracking detector
- Full silicon
- Strip 17,888 Modules 59.87M Channels (current 4088 modules with 6.3M Channels)
- ▶ Pixel 10,276 Modules ≈ 800 M Channels (current 2024 modules 92M channels)

The ATLAS Inner TracKer (ITk) (Click me)

- ▶ New ATLAS Tracking detector
- ▶ Full silicon
- ► Strip 17,888 Modules 59.87M Channels (current 4088 modules with 6.3M Channels)
- ▶ Pixel 10,276 Modules ≈ 800 M Channels (current 2024 modules 92M channels)

- ▶ New ATLAS Tracking detector
- ► Full silicon
- ► Strip 17,888 Modules 59.87M Channels (current 4088 modules with 6.3M Channels)
- ▶ Pixel 10,276 Modules ≈ 800 M Channels (current 2024 modules 92M channels)

Silicon Strip Module

Here barrel module just for illustration purposes (End-Caps modules are equivalent)

Scandinavian effort

- Four participating institutes in Scandinavia
 - Lund University
 - Uppsala University
 - ▶ Niels Bohr Institute
 - University of Oslo
- Pledged for $\approx 10\%$ of the whole end-caps
 - \rightarrow 432 modules of two types 50/50 split
 - → R1 and R3 modules
- Production in industry (NOTE)
- Test of modules in institutes

Swedish contributions to manufacturing and test

Uppsala/NOTE

- Module manufacturing expertise from SCT
- Wire bonding expertise
- Gluing expertise

Lund

- Module testing
- QA/QC
- DAQ expertise

Swedish contributions to prototypes testing

ITk Strip chip irradiation campaign

- ► Testing single event upset rates
- Sets minimum threshold for maximum fluence operation
- Excellent results

NOTE and synergy between academy and industry

- ▶ Agreement with NOTE to work with engineers and technicians on site.
- Payment for personnel and infrastructure for time booked (Extremely cost efficient for prototyping).
- ▶ Allows for efficient production for large scale project for smaller investments

ATLAS Tile Calorimeter Upgrade: Stockholm (Click me)

Hadronic Calorimeter: Replacement of Readout electronics

ATLAS Tile Calorimeter Upgrade

- ▶ Measures hadronic jet energies in ATLAS up to 1.5 TeV per calorimeter cells.
- Crucial for jet identification and missing momentum measurements, central to most searches for BSM physics.
- \blacktriangleright Single pion energy resolution $\frac{\delta \textit{E}}{\textit{E}} \approx \frac{45\%}{\sqrt{\textit{E}}} \oplus 0.01\%$
- High Luminosity requires replacement of all readout electronics -Higher radiation hardness + Fully digital Trigger

Why a High Lumi Upgrade of the Tile Calorimeter? (Daughter Card)

- New High Luminosity read out strategy
 - On-detector electronics to send out all digitized data at LHC frequency
 - Fully digital full granularity trigger at 40 MHz much more capable trigger
 - All buffer pipelines moved to off-detector electronics due to radiation

- ▶ 10% most irradiated photomultipliers out of 10,000
- Higher redundancy in data links and power distribution thus improvement in the system reliability

Main Board (MR

PMT blocks with front-end cards

High-Granularity Timing Detector (HGTD): KTH (Click me)

High-Granularity Timing Detector Principles (HGTD)

- ▶ Collisions can happen at same location in z
- ▶ But not at the same time...

High-Granularity Timing Detector Principles (HGTD)

- The forward region is specially challenging at $\langle \mu \rangle = 200$
- ▶ Improvement in track to vertex association by comparing arrival times

z₀ resolution [mm]

High-Granularity Timing Detector (HGTD): KTH

Mitigate pileup by exploiting that beam spot has time dimension, spread of around 200ps

- ▶ Two endcap disks at $z = \pm 3.5$ m, Si-based Low Gain Avalanche Diode technology, 1.3×1.3 mm² pixels
- $\sigma_t = 30$ ps/track in acceptance: 120 mm < R < 640 mm $2.4 < |\eta| < 4.0$
- KTH responsibility: functionality to use as luminometer by off-detector FPGA-based electronics boards

Hardware Track Trigger (HTT): Uppsala (click me)

With increased luminosity, increased numbers rate of events, but bandwidth does not change. Two options to keep taking data.

- Raising minimum P_T of all recorded objects
 - Losing efficiency
- Improving trigger by improving trigger level reconstruction
 - → No loss in efficiency but requires faster solution than CPUs

Hardware Track Trigger (HTT): Uppsala

- Baseline system, single level-Hardware co-processor under Event Filter
- Regional tracking rHTT ($\approx 10\%$ of tracker volume) at 1 MHz $p_{\rm T} > 2$ GeV with 8 ITk layers
- ▶ Global tracking gHTT at 100 kHz $p_{\rm T} > 2$ GeV with all ITk layers

Hardware Track Trigger (HTT): Uppsala

UPPSALA UNIVERSITET

Massively parallelised system

- 576 pattern recognition boards (AMTP) for both rHTT and gHTT including custom made 11520 Associative Memory (AM) ASICs
- 96 Track fitting boards (SSTP)for full track fitting in gHTT
- ► Total system hit rate is 3.2 Tb/s
- Average power is consumption 289 kW (peak 385 kW)

Uppsala contributions to HTT

- ► HTT Project Office
- Development of an alternative pattern recognition to AM ASIC based on Hough Transform run in commercially available FPGAs
- Coordination of data formats and exchange in the system
- Comparison of performances between AM and Hough based systems.
- Comparison of two hardware-based hit filtering methods for trackers in high-pileup environments, Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13 (click me)
- ► To catch a long-lived particle: hit selection towards a regional hardware track trigger implementation, in review at Journal of Instrumentation (click me)

LUminosity Cherenkov Integrating Detector (LUCID2): Lund

- Main online/offline ATLAS luminosity detector for Run 2
- Also used in the trigger
- Detector and luminosity analysis contributed by Lund with V. Hedberg as LUCID project leader.

LUminosity Cherenkov Integrating Detector (LUCID3): Lund

LUCID 2 refurbished with new PMs to be Main online/offline ATLAS luminosity detector for Run 3.

 HL-LHC requires development of new detector LUCID3

The modified (MOD) or BIM photomultipliers have a ring of aluminium between the window and the photocathode.

The idea is to reduce their acceptance.

Make it smaller but have more of them.

First tests promising.

LUminosity Cherenkov Integrating Detector (LUCID3): Lund

 LUCID 2 refurbished with new PMs to be Main online/offline ATLAS luminosity detector for Run 3.

 HL-LHC requires development of new detector LUCID3

The modified (MOD) or BIM photomultipliers have a ring of aluminium between the window and the photocathode.

The idea is to reduce their acceptance.

Make it smaller but have more of them.

First tests promising.

Conclusions

- ▶ All-silicon Inner Tracker (ITk): Lund & Uppsala
 - Increased pileup requires both improved performance and more radiation hard detectors
 - Readout: Current Inner Detector cannot handle HL-LHC occupancies, ITk readout enables new hardware-based tracking in the trigger system
- High-Granularity Timing Detector (HGTD): KTH
 - Silicon precision-timing detector exploits time spread of beam spot
 - KTH responsible for luminometer functionality
- ▶ Tile calorimeter: Stockholm
 - Design and production of 1200 daughter boards
 - Critical part of readout electronics, all data goes through this path
- Hardware Track Trigger (HTT): Uppsala
 - Hardware tracking can cope with high pileup thus improve trigger and allow unchanged thresholds
 - Uppsala responsible for design and testing of Pattern Recognition Mezzanine cards
- LUminosity Cherenkov Integrating Detector (LUCID): Lund
 - Luminosity critical for entire ATLAS physics program, LUCID main detector so far
 - ▶ HL-LHC pileup requires upgraded detector: several prototypes being investigated

Thank you for your attention!

Questions?

