Swedish activities in ALICE

Peter Christiansen, <u>Alice Ohlson</u>, David Silvermyr Lund University

Partikeldagarna 2019, Linköping

Lund Heavy-Ion Group

- 3 Seniors
 - Peter Christiansen, David Silvermyr, Alice Ohlson
 - Emeriti: Anders Oskarsson, Evert Stenlund
- 1 Postdoc
 - Tuva Richert (VR international postdoc, at NBI)
- 4 Ph.D. Students
 - Jonatan Adolfsson, Adrian Nassirpour, Omar Vazquez Rueda, Oliver Matonoha
- Member of the ALICE Collaboration at the LHC
- Individuals also work on detector R&D for: ILC, ESS, ESSvSB, sPHENIX

From small to large systems

Collectivity: long-range correlations

p/π ratio, radial flow

particle production mainly from 2→2 scatterings (LO), multi-parton interactions high-energy and high-density limit of QCD, equilibrated system governed by thermodynamics and hydrodynamics

Strangeness enhancement

2 Oct 2019

Event shape studies

- What is the origin of strangeness enhancement and collective effects in small systems?
- Select pp collisions that are dominated by soft particle production

Spherocity and R_T

Strangeness production

- Is strangeness produced locally or globally in small systems?
 - $-\Xi$ - π , Ξ -K, Ξ -p correlations (J. Adolfsson) \rightarrow QM19

- Correlated fluctuations of net-strangeness number and net-baryon number
 - Net- Λ fluctuations in PbPb collisions (A. Ohlson)

Collaboration with theorists

- Lund theory group developing Angantyr extending Pythia to heavy-ion collisions, no QGP
- KAW grant: "Pinning down the origin of collective effects in small collision systems"
- CLASH workshop
 - 19-23 August
 - 40 participants in 6 working groups
 - almost entirely discussion-based
 - purpose : to identify/clarify open questions and propose key experimental measurements and theoretical calculations

Fluctuations in heavy ion collisions

• Event-by-event fluctuations of particle multiplicities are used to study properties and phase structure of strongly-interacting matter

Fluctuations grow in the region near a phase transition and/or critical point

Critical opalescence in CO₂ (2nd order PT) J.V. Sengers, A.L Sengers, Chem. Eng. News, June 10, 104–118, 1968

 $T > T_c \qquad T > T_c \qquad T < T_c \qquad T < T_c$

Fluctuations in heavy ion collisions

• Event-by-event fluctuations of particle multiplicities are used to study properties and phase structure of strongly-interacting matter

- Fluctuations grow in the region near a phase transition and/or critical point
- Fluctuations of conserved charges can be related to susceptibilities calculable in lattice QCD
 - precision test of LQCD at $\mu_B \approx 0$

Connecting theory to experiment

- Thermodynamic susceptibilities χ
 - can be calculated within lattice QCD
 - within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the number of conserved charges

Connecting theory to experiment

- Thermodynamic susceptibilities χ
 - can be calculated within lattice QCD
 - within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the number of conserved charges

Theory:
susceptibilities

$$\chi_{n}^{B} = \frac{\partial^{n} \left(P / T^{4}\right)}{\partial \left(\mu_{B} / T\right)^{n}} \qquad \left\langle \left(\Delta N_{B} - \left\langle\Delta N_{B}\right\rangle\right)^{2} \right\rangle = VT^{3} \chi_{2}^{B} = \sigma^{2}$$

$$\left\langle \left(\Delta N_{B} - \left\langle\Delta N_{B}\right\rangle\right)^{3} \right\rangle / \sigma^{3} = \frac{VT^{3} \chi_{3}^{B}}{\left(VT^{3} \chi_{2}^{B}\right)^{3/2}} = S$$

$$\left\langle \left(\Delta N_{B} - \left\langle\Delta N_{B}\right\rangle\right)^{4} \right\rangle / \sigma^{4} - 3 = \frac{VT^{3} \chi_{4}^{B}}{\left(VT^{3} \chi_{2}^{B}\right)^{2}} = K$$

Experiment: moments of net-charge, net-strangeness, net-baryon number distributions $\Delta N_{R} = N_{R} - N_{\overline{R}}$

S

Second moments

• Net-proton fluctuations

• Net-baryon number fluctuations

• Net- Λ fluctuations

• Correlated fluctuations of net-baryon and netstrangeness number

Future prospects – tests of LQCD

- Deviation from the baseline not observed (nor expected) for the second moments
- Deviations from unity and signs of criticality are greatly enhanced for the higher moments (4th, 6th, 8th,...)

But huge statistics are needed → Run 3 and Run 4 at the LHC → ALICE will run at least until 2029!

A Large Ion Collider Experiment

Aiming towards Run 3

- Collision rate at ALICE IP will increase to 50 kHz
 upgrade TPC chambers for continuous readout
- Improve vertexing and tracking at low p_T for measurements of low p_T particles, including heavy flavor and short-lived states, in high multiplicity environment

Upgrades during Long Shutdown 2

TPC upgrade status

TPC upgrade status

Remove Services and FEE (outside cleanroom)

Uninstall MWPC ROC

Install GEM ROC

Install new FEC + test

Ready for transportation to SX2

2 Oct 2019

Readout electronics for the TPC and MCH

- Development and testing of SAMPA chip for the front-end cards at Lund
- Completed robotic testing of 30k (TPC) + 60k (MCH) chips
- In ALICE TPC : 5 SAMPAs/FEC
 91 FECs/sector
 36 sectors
 = 16380 SAMPAs
- Also testing chips for STAR, NICA, FAIR, Rutherford, sPHENIX

Lund activities in ALICE

- Analysis : exploring the origins of collective effects in small systems and strangeness production
 - How do our measurements of pp collisions inform our understanding of AA, and vice versa?
- Hardware : participation in TPC upgrade
 - SAMPA chip campaign successfully completed
 - FEC installation and pre-commissioning about to start
- Coordination : Convenor of Physics Working Group on Correlations and Fluctuations (A. Ohlson)

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV