Local dark matter density from the Milky Way's rotation curve using Gaia DR2 data

Pablo Fernández de Salas

Oskar Klein Centre for Cosmoparticle Physics, Stockholm University

Partikeldagarna – Linköping – 2nd October 2019

Galaxy clusters

Coma cluster

Image Credit: Russ Carroll, Robert Gendler, & Bob Franke; Dan Zowada Memorial Observatory

(Fritz Zwicky 1933)

Galaxy clusters

Coma cluster

Image Credit: Russ Carroll, Robert Gendler, & Bob Franke; Dan Zowada Memorial Observatory

(Fritz Zwicky 1933)

S. Blais-Ouellette et al., Astron. J. 118 (1999) 2123

Galaxy clusters

Coma cluster

Image Credit: Russ Carroll, Robert Gendler, & Bob Franke; Dan Zowada Memorial Observatory

Planck satellite 2018

Galaxy clusters

Coma cluster

Image Credit: Russ Carroll, Robert Gendler, & Bob Franke; Dan Zowada Memorial Observatory

(Fritz Zwicky 1933) CMB anisotropies

Planck satellite 2018

Large-Scale Structures

Image Credit: Sloan Digital Sky Survey

2nd October - Partikeldagarna 2019

Galaxy clusters

Coma cluster

Image Credit: Russ Carroll, Robert Gendler, & Bob Franke; Dan Zowada Memorial Observatory

(Fritz Zwicky 1933)

CMB anisotropies

Planck satellite 2018

Bullet cluster

Image Credit: X-ray: NASA/CXC/CfA/ M. Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/ U.Arizona/ D.Clowe et al.

Large-Scale Structures

Image Credit: Sloan Digital Sky Survey

2nd October - Partikeldagarna 2019

In order to detect dark matter...

- Direct detection
 - · spin (in)dependent
 - \cdot annual modulation
- Production at colliders
 - Mono-X (missing E_{T})
 - · Resonances
- Indirect detection
 - (astroparticle excesses)
 - · gamma rays
 - · positrons
 - · neutrinos

...

...we must know how much DM is there to be detected

- Direct detection
 - · spin (in)dependent
 - · annual modulation

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\boldsymbol{\rho}_{\mathrm{DM},\odot}}{m_{\mathrm{DM}}} \frac{\sigma_{\mathrm{SI}}A^2}{2\mu^2} \int_{v>\sqrt{m_N E_R/(2\mu^2)}}^{v_{\mathrm{max}}} \frac{f(\mathbf{v},\mathbf{t})}{v} \,\mathrm{d}^3\mathbf{v}$$

Indirect detection

(astroparticle excesses)

- · gamma rays
- · positrons
- · neutrinos

. . .

$$\frac{\mathrm{d}N}{\mathrm{d}E}\Big|_{\mathrm{annih.}} \propto \left(\frac{\rho_{\mathrm{DM}}}{m_{\mathrm{DM}}}\right)^2$$
$$\frac{\mathrm{d}N}{\mathrm{d}E}\Big|_{\mathrm{decay}} \propto \frac{\rho_{\mathrm{DM}}}{m_{\mathrm{DM}}}$$

...we must know how much DM is there to be detected

- Direct detection
 - · spin (in)dependent
 - \cdot annual modulation

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\boldsymbol{\rho}_{\mathrm{DM},\odot}}{m_{\mathrm{DM}}} \frac{\sigma_{\mathrm{SI}}A^2}{2\mu^2} \int_{v>\sqrt{m_N E_R/(2\mu^2)}}^{v_{\mathrm{max}}} \frac{f(\mathbf{v},\mathbf{t})}{v} \,\mathrm{d}^3\mathbf{v}$$

Indirect detection

(astroparticle excesses)

- · gamma rays
- · positrons
- · neutrinos

. . .

$$\frac{\mathrm{d}N}{\mathrm{d}E}\Big|_{\mathrm{annih.}} \propto \left(\frac{\rho_{\mathrm{DM}}}{m_{\mathrm{DM}}}\right)^2$$
$$\frac{\mathrm{d}N}{\mathrm{d}E}\Big|_{\mathrm{decay}} \propto \frac{\rho_{\mathrm{DM}}}{m_{\mathrm{DM}}}$$

Common methods to estimate $\rho_{DM,\odot}$

- Local methods
 - Vertical z-Jeans equation
 - Distribution function fitting

- Global methods
 - Rotation curve
 - Distribution function fitting

- Small volume around the Solar neighbourhood
- · Less dependence on a specific DM profile

• Large volume beyond the Solar neighbourhood

ESA/Gaia satellite mission

Mission timeline

•	Launch	19 December 2013
•	Operation since	25 July 2014
•	Nominal mission (5 year	rs) July 2019
•	Mission extended to	31 December 2022

Data Release

Gaia DR1: A.G.A. Brown et al., A&A 595 (2016) A2 Gaia DR2: A.G.A. Brown et al., A&A 616 (2018) A1

• DR1	(14 months)	14 September 2016
• DR2	(22 months)	25 April 2018
• EDR3		third quarter 2020
• DR3	(34 months)	second half 2021
• Full Data Release		TBD

Credit for the images: ESA

2nd October - Partikeldagarna 2019

Gaia Data Release (DR) overview

	# sources in Gaia DR2	# sources in Gaia DR1
Total number of sources	1,692,919,135	1,142,679,769
Number of 5-parameter sources	1,331,909,727	2,057,050 (TGAS)
Number of 2-parameter sources	361,009,408	1,140,622,719
Sources with mean G magnitude $(3 < G < 21)$	1,692,919,135	1,142,679,769
Sources with mean G _{BP} -band photometry	1,381,964,755	-
Sources with mean G _{RP} -band photometry	1,383,551,713	-
Sources with radial velocities	7,224,631	-
Variable sources	550,737	3,194
Known asteroids with epoch data	14,099	-
Gaia-CRF sources	556,869	2,191
Effective temperatures (T _{eff})	161,497,595	-
Extinction (A_G) and reddening $(E(G_{BP}-G_{RP}))$	87,733,672	-
Sources with radius and luminosity	76,956,778	-

Gaia DR2: Galactic density map

2nd October - Partikeldagarna 2019

• Circular velocity

• *R*-Jeans equation

Connection with tracer's observations

$$v_c^2 = \overline{v_{\varphi}^2} - \overline{v_R^2} - \frac{R}{\nu} \frac{\partial \left(\nu \overline{v_R^2}\right)}{\partial R} - \frac{R}{\nu} \frac{\partial \left(\nu \overline{v_R v_z}\right)}{\partial z}$$

[P.F. de Salas et al., arXiv:1906.06133]

- Survey: Gaia DR2 + 2MASS + WISE + APOGEE [A.-C. Eilers et al., Astro. J. 871 (2019) 120]
- Studied region: $5 \text{ kpc} \le R \le 25 \text{ kpc}$
- Tracer population:

Red-giant stars (23 129)

[P.F. de Salas et al., arXiv:1906.06133]

• Baryonic models:

2nd October - Partikeldagarna 2019

[P.F. de Salas et al., arXiv:1906.06133]

2nd October - Partikeldagarna 2019

[P.F. de Salas et al., arXiv:1906.06133]

2nd October - Partikeldagarna 2019

Recent estimates of $\rho_{DM,\odot}$

Method:

- Rotation curve
- Distribution Function
- Vertical Jeans eq.(dark colors: Gaia data)

Recent estimates of $\rho_{DM,\odot}$

Method:

- Rotation curve
- Distribution Function
- Vertical Jeans eq.(dark colors: Gaia data)

 $\rho_{\text{baryons},\odot} =$ (3.3 ± 0.3) GeV/cm³

[Schutz et al., arXiv:1711.03103]

• Differences in the data? Differences fou

Differences found when same survey is used

• Differences in the methods?

Different methods cover different regions (The Galaxy is neither in equilibrium nor axisymmetric)

- Disequilibria effects? Two population HRD [e.g. A. Helmi+ arXiv:1806.06038] Phase-space spirals [e.g. T. Antoja+ arXiv:1804.10196]
- New physics? Dark disk [e.g. J.I. Read, arXiv:0803.2714, C.W. Purcell, arXiv:0906.5348, J. Fan, arXiv:1303.1521]
- Uncertainties in baryonic data?

Underestimated cold gas? [A. Widmark, arXiv:1811.07911]

Differences in the data?

Differences found when same survey is used

- Different populations:
 - Different age
 - Can be affected differently by disequilibria

[J. Buch et al., JCAP 04 (2019) 026]

Differences in the methods?

Different methods cover different regions (The Galaxy is neither in equilibrium nor axisymmetric)

• Schutz, Buch, Widmark: smaller z < 200 pc

- Different methods:
 - Different assumptions
 - Different volume coverage
 - Can be affected differently by disequilibria

Method:

- Rotation curve
- Distribution Function
- Vertical Jeans eq.

(dark colors: Gaia data)

Disequilibria effects

• Phase-space spirals

[T. Antoja, Nature 561 (2018) 360]

Possible source:

- Sagittarius dwarf passage [Laporte+, arXiv:1808.00451]
- Buckling of the bar [Khoperskov+, arXiv:1811.09205]

Possible source:

• Gaia-Enceladus merger [Helmi+, arXiv:1806.06038]

Two populations in HR diagram

halo

P. F. de Salas

2nd October - Partikeldagarna 2019

Conclusions

- Present:
 - Recent precise information on hand (Gaia), but a good Galactic model missing
 - Under equilibrium, axisymmetry and typical baryonic models:

 $\rho_{\text{DM},\odot}$ = 0.3–0.5 GeV/cm³

- Larger measured values can be related to e.g. disequilibria in the Milky Way
- Uncertainties dominated by underlying baryonic model
- Future:
 - Combine different (old and new) methods and data
 - Develop a better model for the Milky Way

Dark disk

• New physics?

[e.g. J.I. Read, arXiv:0803.2714, C.W. Purcell, arXiv:0906.5348, J. Fan, arXiv:1303.1521]

- Dark disk:
 - Cannot explain alone differences in populations
 - Can explain differences between local and rotation curve methods

$$\Sigma_{DD}(R_{\odot}) = \frac{\epsilon_{DD} M_{\rm DM}^{\rm gal}}{2\pi R_{DD}^2} \exp(-R_{\odot}/R_{DD})$$
$$R_{DD} = 2.15 \,\rm kpc$$
$$M_{\rm DM}^{\rm gal} \sim 10^{12} \,\rm M_{\odot}$$

2nd October - Partikeldagarna 2019

• Uncertainties in baryonic data?

Underestimated cold gas? [A. Widmark, arXiv:1811.07911]

$100 \,\mathrm{pc} < r_{\mathrm{from Earth}} < 200 \,\mathrm{pc}$

• Uncertainties in baryonic data?

Underestimated cold gas? [A. Widmark, arXiv:1811.07911]

Stellar acceleration: Radial Velocity Method

The Radial Velocity Method

ESO Press Photo 22e/07 (25 April 2007)

This image is copyright © ESO. It is released in connection with an ESO press release and may be used by the press on the condition that the source is clearly indicated in the caption

[A. Ravi et al., arXiv:1812.07578] [H. Silverwood et al., arXiv:1812.07581]

- Same technique as exoplanet searches
- Doppler spectroscopy
- Less modelling assumptions

 $4\pi G\rho = -\nabla\cdot\vec{a}$

- Since the Sun is also accelerating, we need to move out from $\rm R_{\odot}$
- Local acceleration:

$$a_{\odot} = 2 \cdot 10^{-8} \,\mathrm{cm/s^2}$$

• Needed sensitivity in 10 years:

 $\Delta v_r \approx 5 \,\mathrm{cm/s}$

- Other Doppler shift sources are stronger (best scenario lonely stars)
- Disentangle DM contribution as complex as in other methods

2nd October - Partikeldagarna 2019

Stellar acceleration: Radial Velocity Method

[[]Figure from A. Ravi et al., arXiv:1812.07578]

[A. Ravi et al., arXiv:1812.07578] [H. Silverwood et al., arXiv:1812.07581]

2nd October - Partikeldagarna 2019

- Same technique as exoplanet searches
- Doppler spectroscopy
- Less modelling assumptions

 $4\pi G\rho = -\nabla \cdot \vec{a}$

- Since the Sun is also accelerating, we need to move out from $\rm R_{\odot}$
- Local acceleration:

$$a_{\odot} = 2 \cdot 10^{-8} \,\mathrm{cm/s^2}$$

• Needed sensitivity in 10 years:

 $\Delta v_r \approx 5 \,\mathrm{cm/s}$

- Other Doppler shift sources are stronger (best scenario lonely stars)
- Disentangle DM contribution as complex as in other methods

Stellar acceleration: Radial Velocity Method

[[]Figure from A. Ravi et al., arXiv:1812.07578]

[A. Ravi et al., arXiv:1812.07578][H. Silverwood et al., arXiv:1812.07581]

• Same technique as exoplanet searches

- Doppler spectroscopy
- Less modelling assumptions

$$4\pi G\rho = -\nabla \cdot \vec{a}$$

- Since the Sun is also accelerating, we need to move out from $\rm R_{\odot}$
- Local acceleration:

$$a_{\odot} = 2 \cdot 10^{-8} \,\mathrm{cm/s^2}$$

• Needed sensitivity in 10 years:

 $\Delta v_r \approx 5 \,\mathrm{cm/s}$

- Other Doppler shift sources are stronger (best scenario lonely stars)
- Disentangle DM contribution as complex as in other methods

2nd October - Partikeldagarna 2019

[J. Bergé et al., arXiv:1909.00834]

Science goal #2– Improve our knowledge of the local dark matter and baryon densities It can be fulfilled by monitoring the dynamics of a spacecraft in the Solar System neighborhood, the spacecraft carrying a clock and an accelerometer. The clock will be sensitive to local dark matter inhomogeneities. The combination of ranging and accelerometric data will also be sensitive to local gravitational disturbances, such as those that could be created by a massive enough clump. Finally, accelerometric data will be sensitive to the friction of any baryonic matter (dust and gas) on the spacecraft, allowing for a direct measurement of the baryonic matter density along the spacecraft trajectory. This will allow us to perform the first truly local measurement of the dark matter halo density ρ_0 and to improve the characterization of the dark matter constraints from direct detection experiments.

- It can probe a very local environment (~ 150 AU) 1 AU = 4.85e-6 pc
- It requires new propulsion methods: Breakthrough Starshot laser project
- Many technological challenges (propulsion, tracking, power...)

Gaia DR2 astrometric precision

Proper motion uncertainties:

0.06 mas/yr (for G < 15 mag) 0.2 mas/yr (for G = 17 mag) 1.2 mas/yr (for G = 20 mag)

A.G.A. Brown et al., A&A. 616 (2018) A1

Common methods to estimate $\rho_{DM,\odot}$

Common assumptions:

- Equilibrium (steady state)
- Axisymmetry

From visible tracers to DM:

Collisionless Boltzmann equation

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \nabla_x f \cdot \mathbf{v} - \nabla_v f \cdot \nabla_x \phi = 0$$

$$\nabla_x^2 \phi = 4\pi G\rho$$

Common methods to estimate $\rho_{DM,\odot}$

Common assumptions:

- Equilibrium (steady state)
- Axisymmetry

From visible tracers to DM:

Collisionless Boltzmann equation

- tracer's phase-space distribution
- gravitational potential matter energy density ϕ :

$$\frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}t} = \frac{\partial \boldsymbol{f}}{\partial t} + \nabla_x \boldsymbol{f} \cdot \mathbf{v} - \nabla_v \boldsymbol{f} \cdot \nabla_x \phi = 0$$

$$\nabla_x^2 \phi = 4\pi G \rho$$

Methods to estimate $\rho_{_{DM,\odot}}$

Model construction

$$v_c^2(R) = R \left. \frac{\partial \phi}{\partial R} \right|_{z=0}$$

2nd October - Partikeldagarna 2019

P. F. de Salas

 $v_c^2 = \overline{v_\varphi^2} - \overline{v_R^2} - \frac{R}{\nu} \frac{\partial \left(\nu \overline{v_R^2}\right)}{\partial R}$

Model construction

$$v_c^2(R) = R \left. \frac{\partial \phi}{\partial R} \right|_{z=0}$$

2nd October - Partikeldagarna 2019

P. F. de Salas

 $v_c^2 = \overline{v_{\varphi}^2} - \overline{v_{R}^2} - \frac{R}{\nu} \frac{\partial \left(\nu \overline{v_R^2}\right)}{\partial R}$

$$\frac{\partial \left(\nu \overline{v_z^2}\right)}{\partial z} + \nu \frac{\partial \phi}{\partial z} = 0$$

1D z-Jeans equation method

 $\frac{\partial^2 \phi}{\partial z^2} = 4\pi G \rho$

2nd October - Partikeldagarna 2019

$$\frac{\partial \left(\nu \overline{v_z^2}\right)}{\partial z} + \nu \frac{\partial \phi}{\partial z} = 0$$

1D z-Jeans equation method

 $\frac{\partial^2 \phi}{\partial z^2} = 4\pi G \rho$

2nd October - Partikeldagarna 2019

Methods to estimate $\rho_{DM,\odot}$

1) Choose one or more tracer populations v_i

2) Relate v_i to the gravitational potential Φ

3) Connect Φ with $\rho_{DM} \rightarrow$ connect ν with ρ_{DM}

Previous estimates of $\rho_{_{DM,\odot}}$

Previous estimates of $\rho_{DM,\odot}$

[J. Buch et al., JCAP 04 (2019) 026]

 • Survey: Gaia DR2 + 2MASS
 4445 stars
 37707 stars
 43332 stars

 • Studied region:
 $R \sim 0.15 \, \text{kpc}$ $|z| < 200 \, \text{pc}$

 • Stellar populations:
 A stars
 F stars
 G stars

 • $\rho_{DM,\odot}/(GeV/cm^3)$ $0.608^{+0.380}_{-0.380}$ $1.482^{+0.304}_{-0.304}$ $0.418^{+0.380}_{-0.342}$

[A. Widmark, A&A 623 (2019) A30]

- **Survey**: Gaia DR2 ~ 8 x 23 000 stars
- Studied region: $100 \,\mathrm{pc} < r_{\mathrm{from Earth}} < 200 \,\mathrm{pc}$

2nd October - Partikeldagarna 2019

Rotation curve method

[P.F. de Salas et al., arXiv:1906.06133]

Rotation curve method

[P.F. de Salas et al., arXiv:1906.06133]

2nd October - Partikeldagarna 2019

Distribution Function fitting method

- Jeans' theorem: The DF of an equilibrium stellar system depends on (x,v) only through integrals of motion /_i(x,v)
- Computationally demanding
- Axisymmetry is not required
 - Choose a multicomponent Galactic potential Φ
 - Built a DF f(J) in terms of convenient constants of motion (actions J_i) for different components
 - Fit parameters of Φ and *f*(**J**) to observations

Selected list of recent works on the subject

[J. Binney, arXiv:1207.4910]
[P.J. McMillan et al., arXiv:1303.5660]
[J. Bovy et al., arXiv:1309.0809]
[T. Piffl et al., arXiv:1406.4130]
[J. Binney et al., arXiv:1509.06877]
[D.R. Cole et al., arXiv:1610.07818]
[J. L. Sanders et al., arXiv:1511.08213]
[J. Binney, arXiv:1706.01374]

Methods to estimate $\rho_{DM,\odot}$

- Local and global methods can be complementary
 - · Different methods are affected by different systematics and disequilibria effects

Moment method: Jeans equations

Start from the steady-state collisionless Boltzmann equation

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \nabla_x f \cdot \mathbf{v} - \nabla_v f \cdot \nabla_x \phi = 0$$

Start from the steady-state collisionless Boltzmann equation

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \nabla_x f \cdot \mathbf{v} - \nabla_v f \cdot \nabla_x \phi = 0$$

Write it in cylindrical coordinates $\{R, \varphi, z\}$

$$v_R \frac{\partial f}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial f}{\partial \varphi} + v_z \frac{\partial f}{\partial z} - \left(\frac{\partial \phi}{\partial R} - \frac{v_{\varphi}^2}{R}\right) \frac{\partial f}{\partial v_R} - \frac{1}{R} \left(v_R v_{\varphi} + \frac{\partial \phi}{\partial \varphi}\right) \frac{\partial f}{\partial v_{\varphi}} - \frac{\partial \phi}{\partial z} \frac{\partial f}{\partial v_z} = 0$$

Start from the steady-state collisionless Boltzmann equation

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \nabla_x f \cdot \mathbf{v} - \nabla_v f \cdot \nabla_x \phi = 0$$

Write it in cylindrical coordinates $\{R, \varphi, z\}$

$$v_R \frac{\partial f}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial f}{\partial \varphi} + v_z \frac{\partial f}{\partial z} - \left(\frac{\partial \phi}{\partial R} - \frac{v_{\varphi}^2}{R}\right) \frac{\partial f}{\partial v_R} - \frac{1}{R} \left(v_R v_{\varphi} + \frac{\partial \phi}{\partial \varphi}\right) \frac{\partial f}{\partial v_{\varphi}} - \frac{\partial \phi}{\partial z} \frac{\partial f}{\partial v_z} = 0$$

Multiply by $v_{R,\varphi,z}$ and integrate over all velocities (axisymmetry assumed)

$$\frac{\partial \left(\nu \overline{v_R^2}\right)}{\partial R} + \frac{\partial \left(\nu \overline{v_R v_z}\right)}{\partial z} + \nu \left(\frac{\overline{v_R^2} - \overline{v_\varphi^2}}{R} + \frac{\partial \phi}{\partial R}\right) = 0 \qquad \qquad R - \text{Jeans}$$

$$\frac{1}{R^2} \frac{\partial \left(R^2 \nu \overline{v_R v_\varphi}\right)}{\partial R} + \frac{\partial \left(\nu \overline{v_\varphi v_z}\right)}{\partial z} = 0 \qquad \qquad \varphi - \text{Jeans}$$

$$\frac{1}{R} \frac{\partial \left(R \nu \overline{v_R v_z}\right)}{\partial R} + \frac{\partial \left(\nu \overline{v_z^2}\right)}{\partial z} + \nu \frac{\partial \phi}{\partial z} = 0 \qquad \qquad z - \text{Jeans}$$

2nd October - Partikeldagarna 2019

Start from the steady-state collisionless Boltzmann equation

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \nabla_x f \cdot \mathbf{v} - \nabla_v f \cdot \nabla_x \phi = 0$$

Write it in cylindrical coordinates $\{R, \varphi, z\}$

$$v_R \frac{\partial f}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial f}{\partial \varphi} + v_z \frac{\partial f}{\partial z} - \left(\frac{\partial \phi}{\partial R} - \frac{v_{\varphi}^2}{R}\right) \frac{\partial f}{\partial v_R} - \frac{1}{R} \left(v_R v_{\varphi} + \frac{\partial \phi}{\partial \varphi}\right) \frac{\partial f}{\partial v_{\varphi}} - \frac{\partial \phi}{\partial z} \frac{\partial f}{\partial v_z} = 0$$

Multiply by $v_{R,\varphi,z}$ and integrate over all velocities (axisymmetry assumed)

$$\frac{\partial \left(\nu \overline{v_R^2}\right)}{\partial R} + \frac{\partial \left(\nu \overline{v_R v_z}\right)}{\partial z} + \nu \left(\frac{\overline{v_R^2} - \overline{v_\varphi^2}}{R} + \frac{\partial \phi}{\partial R}\right) = 0 \qquad \qquad R - \text{Jeans}$$

$$\frac{1}{R^2} \frac{\partial \left(R^2 \nu \overline{v_R v_\varphi}\right)}{\partial R} + \frac{\partial \left(\nu \overline{v_\varphi v_z}\right)}{\partial z} = 0 \qquad \qquad \varphi - \text{Jeans}$$

$$\frac{1}{R} \frac{\partial \left(R \nu \overline{v_R v_z}\right)}{\partial R} + \frac{\partial \left(\nu \overline{v_z^2}\right)}{\partial z} + \nu \frac{\partial \phi}{\partial z} = 0 \qquad \qquad z - \text{Jeans}$$

2nd October - Partikeldagarna 2019

Rotation curve method

• Circular velocity

• R-Jeans equation

Connection with tracer's observations

$$v_c^2 = \overline{v_{\varphi}^2} - \overline{v_R^2} - \frac{R}{\nu} \frac{\partial \left(\nu \overline{v_R^2}\right)}{\partial R} - \frac{R}{\nu} \frac{\partial \left(\nu \overline{v_R v_z}\right)}{\partial z}$$

• z-Jeans equation

$$\frac{1}{R} \frac{\partial \left(R \nu \overline{v_R v_z} \right)}{\partial R} + \frac{\partial \left(\nu \overline{v_z^2} \right)}{\partial z} + \nu \frac{\partial \phi}{\partial z} = 0$$

$$\underbrace{\frac{\partial \left(R \nu \overline{v_R v_z} \right)}{\partial R}}_{\text{tilt term } \mathcal{T}}$$

Notice! -equilibrium approximation -axisymmetry

$$\underbrace{\frac{1}{R}\frac{\partial v_c^2(R,z)}{\partial R}}_{\text{rotation curve term }\mathcal{R}} + \frac{\partial^2 \phi}{\partial z^2} = 4\pi G\rho$$

• z-Jeans equation

Ignoring T induces a < 10% error [J.I. Read, J. Phys G41 (2014) 063101]

• z-Jeans equation

Ignoring T induces a < 10% error [J.I. Read, J. Phys G41 (2014) 063101]

1D z-Jeans equation method

[S. Sivertsson et al., MNRAS 478 (2018) 1677]

$$[X/Y] \equiv \log_{10} \frac{X}{Y}$$
 in units of the Solar System

 $\begin{array}{l} \bullet \ \, {\rm Survey: \, SDSS-SEGUE \, G-dwarf} \\ \bullet \ \, {\rm Studied \, region: \, } R \sim 1 \, {\rm kpc} & 515 \, {\rm pc} < z < 1247 \, {\rm pc} & 634 \, {\rm pc} < z < 2266 \, {\rm pc} \\ \bullet \ \, {\rm Stellar \, populations: } & \begin{array}{c} \alpha - {\rm young} & \alpha - {\rm old} \\ [\alpha / {\rm Fe}] < 0.2 \\ -0.5 < [{\rm Fe} / {\rm H}] & -1.2 < [{\rm Fe} / {\rm H}] < -0.3 \end{array} \\ \hline \end{array} \\ \bullet \ \, \rho_{{\rm DM},\odot} & \begin{array}{c} 0.46^{+0.07}_{-0.09} \, {\rm GeV/cm}^3 & 0.73^{+0.06}_{-0.05} \, {\rm GeV/cm}^3 \end{array}$

From bright to not so bright jargon

$$M_V \equiv -2.5 \log_{10} \left(L_V / L_{\odot} \right) + 4.83$$

V waveband centred on $\lambda = 550\,\mathrm{nm}$

2nd October - Partikeldagarna 2019

Photometric system

Filter Letter	Effective Wavelength Midpoint λ_{eff} for Standard Filter^{[2]}	Full Width Half Maximum ^[2] (Bandwidth $\Delta\lambda$)	Variant(s)	Description			
Ultraviolet							
U	365 nm	66 nm	u, u', u*	"U" stands for ultraviolet.			
Visible							
В	445 nm	94 nm	b	"B" stands for blue.			
V	551 nm	88 nm	V, V ¹	"V" stands for visual.			
G ^[3]	464 nm	128 nm	g'	"G" stands for green.			
R	658 nm	138 nm	r, r', R', R _c , R _e , R _j	"R" stands for red.			
Near-Infrared							
I	806 nm	149 nm	i, i', I _c , I _e , I _j	"l" stands for infrared.			
Z	900 nm ^[4]		z, z'				
Y	1020 nm	120 nm	У				
J	1220 nm	213 nm	J', J _s				
Н	1630 nm	307 nm					
K	2190 nm	390 nm	K Continuum, K', K _s , K _{long} , K ⁸ , nbK				
L	3450 nm	472 nm	L', nbL'				
Mid-Infrared							
М	4750 nm	460 nm	M', nbM				
Ν	10500 nm	2500 nm					
Q	21000 nm ^[5]	5800 nm ^[5]	Q'				

Source: Wikipedia