Measuring the local Dark Matter density at direct detection experiments

Riccardo Catena

Chalmers University of Technology

October 2, 2019

Council

Overview

• Local Dark Matter (DM) density, $\rho_{\rm loc}$, and DM-nucleon scattering cross section, σ , are degenerate if the DM scattering rate only depends on their product

$$\frac{\mathrm{d}\mathcal{R}}{\mathrm{d}E_R} = \frac{\rho_{\mathrm{loc}}}{m_\chi m_T} \int_{|\mathbf{v}| > v_{\mathrm{min}}} \mathrm{d}^3 \mathbf{v} \, |\mathbf{v}| f(\mathbf{v}, t) \frac{\mathrm{d}\sigma}{\mathrm{d}E_R}$$

- However, when DM is lighter than ~ 0.5 GeV, spin-independent DM-nucleon scattering cross sections of the order of $10^{-36}~{\rm cm}^2$ are still experimentally allowed
- For these cross section values, the DM velocity distribution becomes a function of the DM-nucleon scattering cross section (the so-called Earthcrossing effect)

B. J. Kavanagh, R. Catena and C. Kouvaris, JCAP 1701 (2017) no.01, 012

 \blacksquare This breaks the degeneracy between $\rho_{\rm loc}$ and σ

Overview

- Earth-crossing effect
- Quantitative impact on the local DM velocity distribution
- Application: Extracting the local DM density from a future signal at direct detection experiments
- Summary

Earth-crossing effect

- \blacksquare In the standard paradigm $f=f_{\rm halo},$ where $f_{\rm halo}$ is the velocity distribution in the halo
- However, before reaching the detector, DM particles have to cross the Earth

• The Earth-crossing of DM unavoidably distorts f_{halo} if DM interacts with nuclei, which implies $f \neq f_{halo}$. I will refer to this distortion as Earth-crossing effect

Two processes contribute to the Earth-crossing effect; attenuation and deflection:

As a result, the DM velocity distribution at detector can be written as follows:

$$f(\mathbf{v}, \gamma) = f_A(\mathbf{v}, \gamma) + f_D(\mathbf{v}, \gamma)$$

• f_A and f_D depends on the input f_{halo} , m_{χ} , σ , the Earth composition and $\gamma = \cos^{-1}(\langle \hat{\mathbf{v}}_{\chi} \rangle \cdot \hat{\mathbf{r}}_{det})$

Key observation: since γ depends on the detector position and on time, the same is true for f(v, γ)

Computing the attenuation term, f_A

 For DM particles crossing the Earth with velocity v, the survival probability is given by

$$p_{\rm surv}(v) = \exp\left[-\int_{\rm AB} \frac{{\rm d} \ell}{\lambda({\bf r},v)}\right]$$

The velocity distribution of particles entering the Earth with velocity \mathbf{v} is related to the free halo distribution $f_0(\mathbf{v}) = f_{\text{halo}}(\mathbf{v})$ by

$$f_A(\mathbf{v}, \gamma) = f_0(\mathbf{v}) p_{surv}(v)$$

Computing the deflection term, $f_{\!D}$

 Rate of particles entering an infinitesimal interaction region at C and scattering into the direction v:

$$\left[n_{\chi}f_{0}(\mathbf{v}')\,\mathbf{v}'\cdot\mathrm{d}\mathbf{S}\,\mathrm{d}^{3}\mathbf{v}'\right]\left[\,\mathrm{d}p_{\mathrm{scat}}\,P(\mathbf{v}'\rightarrow\mathbf{v})\,\mathrm{d}^{3}\mathbf{v}\right]$$

where $dp_{scat} = d\ell / [\lambda(\mathbf{r}, v') \cos \alpha]$.

 The rate of deflected particles leaving the interaction region with velocity v can also be written in terms of f_D

$$n_{\chi} f_D(\mathbf{v}, \gamma) \, \mathbf{v} \cdot \mathrm{d} \mathbf{S} \, \mathrm{d}^3 \mathbf{v}$$

Computing the deflection term, f_D

The contribution to $f_D(\mathbf{v}, \gamma)$ from the interaction point C, and velocities around \mathbf{v}' is

$$f_D(\mathbf{v}, \boldsymbol{\gamma}) = \frac{\mathrm{d}\boldsymbol{\ell}}{\lambda(\mathbf{r}, v')} \frac{v'}{v} f_0(\mathbf{v}') P(\mathbf{v}' \to \mathbf{v}) \,\mathrm{d}^3 \mathbf{v}'$$

- The final expression for f_D is obtained by integrating over $d\ell$ and d^3v' .
- Multiplying f(v, γ) = f_A(v, γ) + f_D(v, γ) by v² = |v|², and integrating over dΩ_v, one obtains the dark matter speed distribution at detector after Earthcrossing.
- Comments: v'/v determined by kinematics; f_D depends upon σ through λ and $P(\mathbf{v}' \rightarrow \mathbf{v})$.

Dark matter speed distribution at detector

B. J. Kavanagh, R. Catena and C. Kouvaris, JCAP 1701 (2017) no.01, 012

Earth-crossing effect / position dependence

In the following,
$$N_{\rm pert} = N_{f_A+f_D,\sigma}$$
 and $N_{\rm free} = N_{f_{\rm halo},\sigma}$

B. J. Kavanagh, R. Catena and C. Kouvaris, JCAP 1701 (2017) no.01, 012

Earth-crossing effect / time dependence

B. J. Kavanagh, R. Catena and C. Kouvaris, JCAP 1701 (2017) no.01, 012

Comparison with the MC code DAMASCUS

T. Emken and C. Kouvaris, JCAP 1710 (2017) no.10, 031

Comparison with the MC code DAMASCUS

T. Emken and C. Kouvaris, JCAP 1710 (2017) no.10, 031

Reconstructing $\rho_{\rm loc}$ and $\sigma:$ 1D profile likelihood

R. Catena, T. Emken and B. Kavanagh, in preparation

Reconstructing $\rho_{\rm loc}$ and σ : 2D profile likelihood

R. Catena, T. Emken and B. Kavanagh, in preparation

- Analytic and MC calculations of Earth-scattering effects can be used to simultaneously extract local DM density and DM-nucleon scattering cross section from data
- For ~ 60 signal events, the relative error on $\rho_{\rm loc}$ is of a factor of 2; for ~ 200 signal events is of about 50%; and for ~ 2000 signal events is of about 10%