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FIXED ORDER CALCULATIONS

We can describe hard collisions at the LHC in terms of quark and gluon cross sections
thanks to the collinear factorization theorem

A
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Whenever the process does not involve very large scale hierarchies, and the observable is
not strongly sensitive to infrared physics, fixed order calculations provide a robust and
reliable framework to obtain precision predictions at the LHC.

Non-perturbative corrections set the limit of perturbative calculation: for generic
observables at the LHC scale, they can be at the percent level. Since as ~ 0.1, this means
that we can reliably compute up to NNLO.

The LHC is already now able to measure some standard candles at the few percent level
(DY), and in the future it is expected that few-percent precision measurements could be
possible for several complex final states.

Fixed order calculations also serve as an important ingredient for resummation and parton
shower predictions: matching / merging, extraction of perturbative coefficients...



NNLO CALCULATIONS: AMPLITUDES

To compute NNLO corrections to pp — X, one needs two-loop matrix elements for f f — X,
one-loop matrix elements for ff — X+f, and tree-level matrix elements for f f = X+f f
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Over the past years, there has been a lot of progress in two-loop amplitude calculations.
Both analytic and numerical approaches have been developed, and right now we know
almost all relevant scattering amplitudes for 2 — 2 reactions.

First 2 — 3 results are now appearing.

NNLO Corrections also require 1-loop amplitudes to be evaluated very close to degenerate
kinematics. Nevertheless, it seems that at least in some cases current one-loop providers
are able to cope with this situation. For example, OpenLoops results have been used for
the calculations of NNLO corrections to di-boson processes



NNLO CALCULATIONS: SUBTRACTIONS

Apart from loop amplitude, at NNLO one also needs a framework to deal with extra real
emission.
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Real emission corrections are finite in the bulk of the allowed phase-space, but infra-red
and collinear divergencies appear upon integration over energies and angles of the
emitted partons.

To obtain fully differential results, we need to extract these singularities without
performing the integration over the resolved phase space. The more extra emissions one
has to consider, the more complicated this problem is.

For a long time, this was the main bottleneck for computing NNLO predictions. For
example, di-jet amplitudes have been known for almost 20 years, but NNLO predictions
for di-jet production only became available two years ago.



THE NNLO REVOLUTION

Over the past few years, several techniques have been developed to deal with the real-
emission problem. This, combined with the availability of 2-loop amplitudes, lead to a
large number of NNLO predictions for important 2—2 LHC processes.
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Currently, going beyond 2 — 2 is prevented by the lack of 2-loop amplitudes.
However, even when they would become available, it will require a lot of effort to obtain
NNLO predictions using existing methods.



NNLO: WHAT DID WE LEARN?

1.They work! In general, NNLO QCD improves the agreement between theory and data
(WW, WZ, Z+j, di-photons, top pairs);

2.1t is important to have NNLO QCD computations for fiducial cross sections measured in
experiments; corrections to inclusive cross sections and to fiducial cross sections may be
quite different (Higgs production in WBF, single top with decay, WW pairs);
extrapolations some time lead to ““wrong” result (WW pairs, top pt);

3.NNLO QCD computations work in ““hard kinematic regions”. For an object with an
invariant mass O(100) GeV, ““hard” means down to transverse momenta of O(30) GeV.
This requires NNLO. Resummations are important but with NNLO results available,
they become relevant at low(er) transverse momenta (Z/H p; studies);

4. Thanks to these computations, it becomes possible to get information about physics that
otherwise it is not accessible.



NNLO: STEALTHY STOPS RELOADED 7

Thanks to their masses, spins of tops and anti-top remain entangled all the way through the moment
of their decay. This effect leads to a small shape change in the A¢y distribution.

The presence of stops with masses comparable to the top quark can, with some effort, be detected in
that distribution.

Accurate description of this distribution in the SM requires corrections to top quark production and
decay; recently it was extended to NNLO in the narrow width approximation.
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NNLO: TECHNIQUES AND LIMITATIONS

Several methods have been developed to deal with real emission at NNLO:
“q¢” slicing [Catani, Grazzini]
““Antenna subtraction” [Gehrmann-de Ridder, Gehrmann, Glover et al]
“Jettiness” slicing [Boughezal et al, Gaunt et al]
““Sector decomposition & FKS” subtraction [Czakon, Heymes, Caola, Roentsch, KM]
“Projection-to-Born” [Cacciari et al]
““Colorful” [del Duca et al]
“"Local analytic subtraction” [Magnea et al]
“Geometric” [Herzog]

The underlined methods can — in principle — deal with arbitrary processes.

In practice, the complexity grows very fast with the number of color particle at the Born
level. Even simple 2—2 calculations involving colored initial and final state require
significant computing power.
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Even with large computing farms, these requirements are likely to severely limit the
breadth of high-precision phenomenological studies for complex processes.

An optimal method, able to efficiently deal with complex processes has yet to emerge



NNLO: SLICING VS SUBTRACTION

Similarly to what happened at NLO, two different strategies have been adopted to deal
with real-emission singularities:

PHASE-SPACE SLICING
")

/ MPFydey = / IMPPFdéa). / MPFyds + O(6)
0

e conceptually simple, straightforward implementation
e must be very careful with residual ® dependence (especially in differential distributions)
e highly non-local — severe numerical cancellations

SUBTRACTION
/|M‘2fjd¢d — / [|./\/l|2./rj — S] d§b4 -+ /qubd

e in principle can be fully local — better efficiency / reliability
e requires knowledge of subtraction terms, and their integration



Moult et al (2017)

NNLO: SLICING TECHNIQUES
")

/ MPFydey — / IMPPFdéa). / MPFydes + O(6)

0

Starting point of a NkLO calculation: find a variable 0 that separates resolved /unresolved
phase space. E.g.: q:[Catani, Grazzini], N-jettiness [Boughezal et al, Gaunt et al].

In the unresolved region, use soft-collinear approximation to integrate over unresolved
momenta. Typically, result obtained from expanding a resummation formula. Currently,
this information is only known numerically for processes involving jets or massive
particles (soft function).

In the resolved region, only need N¥1LO corrections to X+].
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NNLO: SLICING RELOADED
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Despite being abandoned long time ago for NLO, slicing techniques have been used for
NNLO calculations. This is due at least in part to the following reasons:

1.within this approach, one can use existing NLO results for the CPU-intensive ~“X+]” part
of the calculation. The availability of very efficient tools for NLO calculations allowed to
obtain stable enough results for several key reactions like V/H, VV, single-top, top
decay, H/V+], H—bb decay, top pair production;

2.despite being very CPU-intensive, we now have large computing facilities;

3.NNLO corrections are typically small, so often an O(20%-50%) error on the NNLO
coefficient only results in a percent-level error on the total cross-section;

4.at NNLO, a simple-enough subtraction framework analogous to Catani-Seymour or FKS
has yet to emerge.

Nevertheless, slicing techniques are very delicate and if one wants to use them it is very
important to always make sure that power corrections are under control. In general, their
impact becomes more difficult to control in processes with a non-trivial color structure (see
e.g. Campbell et al. (2019)), and in delicate fiducial regions (e.g. isolation).



NNLO SLICING: RECENT RESULTS

Recently, slicing the q; formalism was extended to processes involving massive particles.
This allowed for the calculation of NNLO corrections to top pair production within this

approach [Catani et al (2019)].

So far, results have been obtained for the total cross section, and are in agreement with the

ones obtained using a subtraction formalism [Czakon et al].
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NNLO SLICING: IMPROVEMENTS

The use of slicing techniques for complex processes or at higher orders would likely
require improvements. Roughly, they can be divided in three categories:

1.Devise ““optimal” slicing parameters, as they can lead to better performances. For
example, even within N-jettiness slicing it is well-known that different N-jettiness
definitions perform very differently. In general, one would want a variable that restricts
all radiation to be soft and collinear;

2.devise more differential slicing approaches. In principle, a fully differential slicing
technique can be easily upgraded to a fully-fledged subtraction;

3.develop a better understanding of power corrections.

Recently, there has been a lot of activity on (3). Conceptually, this is non trivial because it
corresponds to understanding factorization properties of QCD at next-to-leading power.

The first power corrections have been obtained using (SCET-assisted) fixed-order
calculations. So far, results are only known for color singlet production [Boughezal et al,
Moult et al, Ebert et al], and also in this case their structure is not completely understood.
Analogous results for g; have been obtained [Ebert et al].



NNLO SLICING: POWER CORRECTIONS FOR NLO HIGGS PRODUCTION
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For the gqg channel, large cancellations between L and NL power corrections. Important to
understand to which extent this is accidental.

It will be important to generalize these results to NNLO and to processes involving color
in the initial and final states.



NNLO: SUBTRACTION

/ MPFrdeg = / |M|PF; — 8] dos + / Sdeq

Slicing problems are overcome with subtraction. One devise a subtraction term S that a)
reproduces the matrix element in the soft-collinear limit and b) is simple enough to be
integrated for generic configurations of the resolved phase space.

At least in principle, subtraction are local: singularities are subtracted point-by-point in
the phase space and not on average.

Because of this, there are no issues about power corrections etc., and the technique should
perform much better.

Historically, subtractions outperformed slicing at NLO.

Subtraction scheme however suffer from some drawbacks:
1. it is non trivial to identify a good subtraction function
2. integration of the subtraction terms can be (prohibitively) difficult

3. it is non-straightforward to reuse existing NLO results for the “X+]” part of the
calculation



NNLO SUBTRACTIONS: STATUS

Currently, two different fully-fledged subtraction schemes exist for LHC processes:

1. antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover et al].

e Basic idea: construct an approximation to the full matrix element valid over the whole
phase space and simple enough to integrate it. In this respect, very similar to Catani-
Seymour, although based on antennas and not dipoles.

e Method is fully analytic, but there is a degree of non-locality (azimuthal averages).
Although in practice this is not a problem, it may somewhat affect performances.

e Large number of subtraction terms.
e Led to many phenomenological results (H+], V+], di-jet, VBE, DIS...).

2. FKS+sector decomposition [Czakon, Heymes, Caola, Rontsch, KM].
e Basic idea: partition the phase space like in FKS, in each sector parametrize in terms of
energies and angles and subtract all the divergences like in FKS.
e Method is fully general, and can deal with massive partons easily.

* In its original formulation, some spurious singularity was subtracted, leading to
unnecessary complications. This made subtraction terms quite difficult. Their
integration was done numerically.

e Led to many phenomenological results (top pairs+decay, single top, top decay, b
decay, H+]...).



NNLO SUBTRACTIONS: STATUS

Apart from antenna and FKS+sector decompositions, other techniques developed and
used for phenomenological applications. For example

1.Projection-to-Born [Cacciari et al]. Fully local and fully analytic, but requires the
knowledge of NNLO corrections inclusive over QCD radiation but differential in the
Born phase space. Applied to VBF, DIS@N3LO (+with antennas)

2.Colorful [del Duca et al]. In principle, generic but currently only developed for e+ e-

processes. Local subtraction, but at least so far semi-numerical. Applied to e+ e- — 3j,
H—bb,...

Currently, no fully validated framework having the following properties exists
1. fully local
2. fully analytic

3. “simple” and completely generic

In principle, such a scheme should outperform existing results.

Apart from practical considerations, developing a framework with these features is an
interesting theoretical problem in QCD. Can shed more light on the structure of soft/
collinear radiation, and shed light on fixed-order/resummation/parton shower
connections.



NNLO SUBTRACTIONS: GENERALITIES

Compared to NLO, one new feature appears at NNLO: overlapping singularities.

At NLO: only 2-particle invariants can vanish, s;jj ~ E; [1-cos(0;j)] = xg Xe. Singularities
completely factorized.

drg dxg
/‘M|2d¢N/[5’3%E5’39|M|2} 1+2¢ _1+e

Ly Ly

At NNLO, 3-particle invariants can vanish, sjk ~ £ E; E;cos(0;). This leads to overlapping
singularities. Schematically:
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This means that the x; — 0 limit at fixed x; and the x; — 0 limit at fixed x; are different. In
general, this is a physical feature and not an artefact. E.g:
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NNLO SUBTRACTIONS: GENERALITIES

Overlapping singularities makes subtraction more difficult at NNLO.

In CS-like approaches (i.e. Antenna), they must be carefully reproduced by the
subtraction function. It is non-trivial to devise proper simple enough subtraction
function that don’t contain extra spurious singularities.

In FKS-like approaches, the x; > x; and x; > x; cases are dealt with separately (" sector
decomposition”)

Another complication of NNLO is that double real or virtual emission has in general a
more complicated color structure.

Nevertheless, for double-real emission off massless particles all the non-trivial structures
are still dipole-like ~ T; T;.

In (real-)virtual corrections however, 3-particle correlations fix appear for processes
involving more than than three partons at the Born level.

This implies that any subtraction scheme is complete if

1. it is known for color singlet pp — X production and decay (II)
2. it is known for color singlet X — jj decay (FF)
3. it is known for DIS-like processes p + X* — j + X (IF)

4. non-trivial fix color correlations are understood



NEW SUBTRACTION SCHEMES: GEOMETRIC

In the recent past, several new schemes have been proposed with the goal to obtain a
generic, local and analytic framework for NNLO calculations.

One example is the ““geometric” approach [F. Herzog]. It is based on
the following:
1. identify singular regions directly in the s;;space;

As13

2. use this to construct a local slicing scheme in the s;;space;

3. promote the slicing to a full subtraction. 593

In this framework, overlapping singularities are removed by .
explicitly ordering all possible limits. b

A nice feature of this approach is that the integration of the countersterms is simple.

Its main drawback is that it is based on looking at the structure of individual Feynman
diagrams. Every diagram is treated differently. This makes the underlying IR structure of
the amplitude hidden.

Currently, this approach is at the proof-of-concept stage. So far, it has been used to
reproduce the known pole-structure of the double-real correction to H—gg in pure
gluodynamics (17 = 0).



NEW SUBTRACTION SCHEMES: LOCAL ANALYTIC SUBTRACTION

Another example of new schemes is the so-called ““local analytic sector subtraction”
scheme [Magnea et al].

The origina idea of this approach is to combine FKS partition with Catani-Seymour
parametrization of the phase space. It is constructed in the following way:

1. the phase space is partitioned in different regions in a FKS-like approach. Partitions are
engineered to automatically remove overlapping singularities: different orderings are
treated in different partitions;

2. in each partition, a simple CS-like parametrization is used. This leads to very simple
counterterms, whose analytic integration is straightforward.

The method is fully local and fully analytic, and combine different approaches in an
interesting way.

The final result has the expected dipole-like structure, although soft radiation is not
treated globally but split into the various FKS sectors.

Currently, the framework has been used to reproduce the nf contribution to V—jj decay,
although extension to the more complex initial-state case is underway.



NEW SUBTRACTION SCHEMES: NESTED SUBTRACTION

The last new scheme I will discuss is the ““nested soft-collinear subtraction” scheme
[Caola, Rontsch, KM].

The starting point of this approach is the original FKS+sector decomposition approach.

Its crucial observation is that the original approach contains overlapping singularities of
the form

1
B0 + E;0;1

If one assumes the ordering E;> E; such that E;= x; E;, and 6> 0i, such that Oi = x, O,
this becomes

1 1
X

Ei0;,  x1+ 2o

The x; + x, term leads to a non-trivial soft/collinear overlapping singularity.

In the original FKS+sector decomposition approach (cf. STRIPPER), this was dealt with by
sector decomposition like all the other overlapping singularities.

However, this overlap is unphysical.



COLOR COHERENCE IN NNLO SUBTRACTIONS

Indeed, such an overlap would violate color coherence, which states that for any physical
quantity

1. soft gluons are only sensitive to the charges of the system;

2. if a bunch of partons become collinear, soft gluons can only resolve the total color

charge of the collinear system.

It is easy to show that this implies that no non-trivial soft/ collinear overlaps can appear in
physical quantities.

They appear at intermediate stages in the original FKS+sector decomposition approach
because singularities were identified by looking at individual propagator rather than at
on-shell gauge-invariant matrix elements.



COLOR COHERENCE AND THE NESTED SUBTRACTION SCHEME

In the nested soft-collinear subtraction scheme, the non-physical soft collinear overlaps
are removed.

As a consequence, soft and collinear singularities are completely factorized, and can be
dealt with independently one by one, in a nested way.

Specifically, the subtraction proceeds as follows.
1. all soft singularities are subtracted globally, without introducing any sector.

The soft counterterms are simple enough that they can be analytically integrated for
arbitrary (massless) processes [Caola, Delto, Frellesvig, KM (2018)];

2. FKS partitions are introduced to separate different collinear regions. In each partitions,
(physical) collinear overlaps are removed using sector decomposition.

Also in this case, the counterterms are very simple and have been analytically integrated
for all possible cases [Delto, Melnikov (2019)].

At the end, the singularity structure is very transparent, and relatively compact. All the
singularities (double-soft/single-soft/ triple-collinear / double-collinear) are subtracted
independently, one after the other, in a nested way:.



THE NESTED SUBTRACTION SCHEME

This scheme has several attracting features:
e itis fully analytic, fully local and it can in principle be applied to arbitrary processes;

¢ itisin some sense ~minimal”, i.e. it contains the minimal number of subtraction
needed to regulate physical QCD amplitudes. This may become relevant for high
multiplicity processes;

e it is flexible. Contrary to the original FKS, is not tied to a particular parametrization.
Currently, the original FKS+sector decomposition parametrization is used for
convenience, but one could explore ditferent parametrizations.

Similarly, overlapping singularities do not necessarily require sector decomposition, but
could be dealt with using different approaches.

For example, they could be dealt with at the FKS-partition level, in which case this formalism
would become very similar to the local analytic subtraction one.

Currently, the scheme has been fully validated for initial state production [Caola, Rontsch,
KM (2019)] and final state production [Caola, Delto, Rontsch, KM, arXiv:1906.xxxx].

Results for the initial-final case are known, and are currently under validation [Asteriadis,
Caola, Delto, Rontsch, KM, arXiv:19xx.xxxx].



THE NESTED SUBTRACTION SCHEME: PERFORMANCE

Apart from theoretical considerations, from a purely practical point of view, a good

NNLO framework should be:

1. reliable. Corrections should be computable to arbitrary accuracy;

2. efficient.

It is reasonable to expect that at fully local fully analytic scheme could fulfil these
requirements. Within the nested soft-collinear scheme, one can test it in simple processes.

1. reliable — pick a process where analytic results are known, and compare to very

high accuracy
1

- 1.0 .  Numerical result — - Channel Color structures | Numerical result (nb) | Analytic result (nb)
§ 10-1 7 Analytic result —— | % — 99 — 8.351(1) 33516
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20| Gt — aa; (i # —)) CrTr 0.4182(5) 0.4180
R . Cp(Ca — 2CF) —9.26(1) - 10~ ~9.26-10~4
o LO5F = 49 + 94; - -9.002(9) -8.999
Z sl 99 - 1.0772(1) 1.0773
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Very accurate results for DY NNLO corrections. Similar results for X—qg, ¢g¢ decay processes.
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THE NESTED SUBTRACTION SCHEME: PERFORMANCE

2. efficient: Higgs and DY production in 1 hour on a standard laptop (1 core)

Higgs total cross section:

o = 15.42(1) pb;

NLO

Oy

pp — 21, symmetric cuts:
oy = 650.4 & 0.1 pb;

NLO
Opy

30.25(1) pb;

— 700.2 4 0.3 pb:

UENLO

NNLO
Opy

pp — v~ — 21, differential distributions [old semi-numerical code]
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O(100) CPU HOURS

= 39.96(2) pb.

— 734.8 + 1.4 pb.

Leptons



THE NESTED SUBTRACTION SCHEME: PERFORMANCE

Efficiency will become more and more important for complex final states.
Phenomenological applications inversely proportional to the time needed to obtain results:
more complex result, and richer phenomenological structure (observables...).

A “simple” complex problem: VH, H—-bb@NNLO.

Although this process is by far simpler than a genuine process with color in the initial and
final states, it can give us a rough idea of performances in more complex scenarios.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

% 1.0 _ NNLO,approx +0NLOXxNLO —— _ % 0.020 - NNLO full — |
g i NNLO,approx —— | g [ NNLO,approx '
I ] o) I
% 10-1 | = 0.015 |
3 E 3 :
£ | S 0010
=0 =
E : 2 0.005 |
I Z I
< 1073 L S :
15 N
S : o Sl 2
= 1.0 — = 1 b
— ] — r
05 ] Oog_l....l...Hl....l........I....I_
100 125 150 175 50 100 150 200 250 300 350
myp [GeV] Py (GeV]

Stable result with reasonably small computing resources.



NNLO SUBTRACTION: PARTON SHOWER AND RESUMMATION

Apart from their theoretical appeal, ““simple” subtraction schemes can also shed more light
on the IR structure of perturbative QCD.

Can be informed by resummation, and provide interesting fully differential information to

them.

Better understanding of subtraction schemes could also lead to more physical matching/
merging schemes and perhaps even more accurate showers.

“Very clear IR structure”

Can we exponentiate (at the fully
differential level... — PS)?

. N3LLglobal coefficients. ..

differential level
f ALL-ORDER STRUCTURES /
( N RESUMMATION
< NESTED SOFT-
3 COLLINEAR “Abelian”
5 SUBTRACTION __—> exponentiation, PDF
‘ // evolution
=~
>_( Sec(a)+(c)+DC \
- ——, CMW scheme
% Seclb)+(d) > change [fully
N \ differential...]

\ Non-global LL kernel

\-

I

So far, discussion mostly
focused on finding “a”
subtraction scheme, but
interest in a better
understanding of the

underlying IR structure (see
e.g. [Magnea et al (2018)])



CONCLUSIONS

NNLO calculations are at the core of the precision program at the LHC.
They require multi-loop amplitude, and efficient subtraction schemes.
In the recent past, there has been a lot of developments on both.

In particular, we now have several subtraction schemes for fully differential NNLO
calculations. Some of them are in principle generic (Sector decomposition+FKS, antenna,
Jettiness slicing).

As processes become more and more complex, very efficient subtraction schemes are
required. So far, an optimal NNLO framework has not yet emerged.

Several proposals for better schemes in the recent past (geometric, local analytic subtraction,
nested subtraction). They are very promising, but not yet fully developed.

Developing local and analytic subtraction schemes is also an interesting theoretical
problem in QCD.

A clear organization of soft/ collinear information is needed for fixed-order, resummation
and parton shower approaches. ““Clean” NNLO formalisms seem in direct correspondence
with resummation approaches. They are not all-orders, but are fully local. Perhaps, one can
learn from both approaches to improve on them.



