Outlook

Bryan Webber Cambridge

- Aims
- Parton shower issues
- Resummation issues
- Conclusions?

What are we trying to achieve?

Plausible uncertainties for IRC-safe observables:

- Fixed order: few \% over understood ranges
- Resummed: few times FO over extended ranges
- Parton shower: few times RS for most IRC-safe PLUS ~10\% (tunable) for many IRC-unsafe

Parton Shower Issues

- Generator dependence:
- Evolution variables: q^{2}, p_{t}, θ, "time", \ldots
- Partons vs dipoles
- Recoil schemes
- NLO splitting
- Subleading colour
- Quantum correlations (spin, EW, ...)
- Hadronization

PS Generator Dependence

- Dijet pt (parton level)

Effect of jet finding, $R=0.4$

Nagy \& Soper, 1711.02369

PS Generator Dependence

- Quark-gluon tagging: track width \& multiplicity

ATLAS,1405.6583
CMA-PAS-JME-16-003

- Pythia good for quarks, not so good for gluons
- Herwig better for gluons

PS Generator Dependence

- Quark-gluon tagging: jet images

ATL-PHYS-PUB-2017-017

- Pythia, Sherpa similar, Herwig less

Dire Shower vs ME

Dasgupta, Dreyer, Hamilton \& Salam, 1805.09327

Dipole vs Parton Showers

Parton vs Dipole Showers

- Parton Shower
- Simple 1-to-2 splittings: fewer recoil ambiguities
- Colour structure simple at DL, NDL
- Soft azimuthal correlations missing
- Dipole shower
- 2-to-3 splittings mean more recoil ambiguities
- Colour structure more difficult, even at DL
- Azimuthal correlations included

kt-ordered dipole shower

Angular-ordered parton shower

- Some azimuthal correlations lost through averaging

$$
\begin{aligned}
P(q \bar{q} g g) & \simeq\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(A L^{4}+B L^{3}+C L^{2}\right) \\
\frac{d P}{d L} & \simeq\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(4 A L^{3}+3 B L^{2}+2 C L\right)
\end{aligned}
$$

- AOPS vs Exact LOME (Madgraph)
- $A=$ collinear-soft, $B=$ collinear-nonsoft
- C not reliable (but improves agreement)

NLO Showers

- Höche, \& Prestel, 1705.00742, \& Krauss1705.00982
- Include NLO terms in $1 \rightarrow 2$ ($q \rightarrow q^{\prime}$ differential)
- Dulat, Höche \& Prestel, 1805.03757
- Differential double soft vs CMW

FIG. 8. Scale variations in the leading-order and next-to-leading order (soft) parton shower simulation of $e^{+} e^{-} \rightarrow$ hadrons at LEP I energies at parton level. We compare to both the plain leading-order predictions (green) and the result in the CMW scheme (blue).

Subleading Colour

- Isaacson \& Prestel, 1806.10102 use colour-flow basis

- Negative weights: MC efficiency? Looks OK ...

Subleading Colour

- Isaacson \& Prestel, 1806.10102

Spin Effects in Showers

Azimuthal Correlations

			$\mathcal{M}_{h_{1} h_{2} h_{3}}$
R	+R	$z^{-\frac{1}{2}} \mathrm{e} e^{i \phi} z^{\prime}$	
R	+L	$z^{-\frac{1}{2}} \mathrm{e}^{i \phi}\left(1-z^{\prime}\right)$	
R	-R	$-(1-z) z^{-\frac{1}{2}} \mathrm{e}^{-i \phi}\left(1-z^{\prime}\right)$	
R	-L	$-(1-z) z^{-\frac{1}{2}} \mathrm{e}^{-i \phi} z^{\prime}$	

$$
\begin{aligned}
& \left|\mathcal{M}_{R+R}+\mathcal{M}_{R-R}\right|^{2}= \\
& \frac{1}{z}\left[z^{\prime 2}+(1-z)^{2}\left(1-z^{\prime}\right)^{2}\right. \\
& \left.-2(1-z) z^{\prime}\left(1-z^{\prime}\right) \cos 2 \phi\right] \\
& \left|\mathcal{M}_{R+L}+\mathcal{M}_{R-L}\right|^{2}= \\
& \frac{1}{z}\left[\left(1-z^{\prime}\right)^{2}+(1-z)^{2} z^{\prime 2}\right. \\
& \left.-2(1-z) z^{\prime}\left(1-z^{\prime}\right) \cos 2 \phi\right]
\end{aligned}
$$

$$
\sum_{h_{3}}\left|\sum_{h_{2}} \mathcal{M}_{h_{1} h_{2} h_{3}}\right|^{2}=\frac{1+(1-z)^{2}}{z}\left[z^{\prime 2}+\left(1-z^{\prime}\right)^{2}\right]-4 \frac{(1-z)}{z} z^{\prime}\left(1-z^{\prime}\right) \cos 2 \phi
$$

EPR Correlations

$$
P(h \rightarrow q \bar{q} q \bar{q}) \propto 1+a\left(z_{1}\right) a\left(z_{2}\right) \cos 2\left(\phi_{1}-\phi_{2}\right)
$$

- where $a(z)=\frac{2 z(1-z)}{1-2 z(1-z)}$
- Fully included in Herwig (CKR method)

Collins, NPB304(1988)794
Knowles,CPC58(1990)271
Richardson, JHEP111(2001)029

CKR Method

- Backtracking essential for linear algorithm

- LO=MadGraph5, QS=Herwig7AO, DS=Herwig7DS

Richardson \& Webster, 1807.01955

- Different dipole options illustrate recoil ambiguity

Richardson \& Webster, 1807.01955

- Dilepton correlation in top decays

Richardson \& Webster, 1807.01955

Electroweak Showering

Standard Model couplings

- Far above EW scale, at q>>mw, we have approximately unbroken $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
- Corrections ~mw/q
- Real-virtual emission mismatch leads to double logarithms of q / mw_{w}

$$
\begin{aligned}
& \delta \rightarrow u_{L} \\
& q \frac{\partial}{\partial q} u_{L}(x, q)
\end{aligned}=\frac{\alpha_{2}}{\pi} C_{F} \int_{0}^{1-m_{W} / q} \frac{d z}{z} P_{f f}(z)\left[\frac{1}{3} u_{L}(x / z, q)+\frac{2}{3} d_{L}(x / z, q)-z u_{L}(x, q)\right]
$$

- Define $Q^{ \pm}=\frac{1}{2}\left(u_{L} \pm d_{L}\right)$

$$
\begin{aligned}
& q \frac{\partial}{\partial q} Q^{+}(x, q)=\frac{\alpha_{2}}{\pi} C_{F} \int_{0}^{1-m_{W} / q} \frac{d z}{z} P_{f f}(z)\left[Q^{+}(x / z, q)-z Q^{+}(x, q)\right] \\
& q \frac{\partial}{\partial q} Q^{-}(x, q)=-\frac{\alpha_{2}}{\pi} C_{F} \int_{0}^{1-m_{W} / q} \frac{d z}{z} P_{f f}(z)\left[\frac{1}{3} Q^{-}(x / z, q)+z Q^{-}(x, q)\right]
\end{aligned}
$$

- Q+ has DGLAP (single-log) evolution
- Q- has double-log damping (asymptotic symmetry)

Momentum fractions in jets

Bauer, Provasoli, BW, 1808.08831

- Similarly in initial-state showering (PDF evolution)
- ul-dL (\& SL-CL) has double-log damping

Bauer, Ferland, BW, 1703.08562

- Parity violation implies large polarisation effects
- Azimuthal integration cancels helicity interference (could be handled by CKR method)

Mixed State Showering

- Mixed states have different couplings

Unbroken phase
Broken phase

- Is there an analog of CKR?

Chen, Han, Tweedie, 1611.00788

Mixed U(1)xSU(2) PDF

$$
f_{B W}(x)=\frac{2}{\bar{n} \cdot p} \int \frac{d y}{2 \pi} e^{-i 2 x \bar{n} \cdot p y} \bar{n}^{\mu} \bar{n}_{\nu}\langle p| B_{\mu \lambda}(y) W_{3}^{\lambda \nu}(-y)|p\rangle+\text { h.c. }
$$

$$
\alpha_{M}=\sqrt{\alpha_{1} \alpha_{2}}
$$

- Left-handed quarks have isospin and hypercharge, so they can generate $\mathrm{f}_{\mathrm{B}}\left(\right.$ ICP $\left.=1^{+}\right)$
- This means in broken basis we have f_{γ}, f_{z} and $f_{y z}$

Mixed Higgs PDF

- $f_{H H}^{1+}$ distinguishes between Higgs and Z

$$
\begin{aligned}
f_{Z_{L}} & =f_{H}^{0+}-f_{H}^{1+}-f_{H H}^{1+} \\
f_{h} & =f_{H}^{0+}-f_{H}^{1+}+f_{H H}^{1+}
\end{aligned}
$$

Amplitude-level PS

$$
\begin{aligned}
& \mathbf{P}_{i j}=\delta_{s_{j}, \frac{, 2}{2}} \delta_{j}^{\text {final }}\left(\sqrt{\frac{\mathcal{P}_{q q}}{2 \mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left\langle q_{i} \tilde{p}_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)+\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q q}}{2 \mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left[\tilde{p}_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)\right. \\
& \left.+\sqrt{\frac{\mathcal{P}_{g q}}{2 \mathcal{C}_{\mathrm{F}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left\langle\tilde{p}_{j} q_{i}\right\rangle} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)+\sqrt{\frac{\left(1-z_{i}\right)^{2} \mathcal{P}_{g q}}{2 \mathcal{C}_{\mathrm{F}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left[q_{i} \tilde{p}_{j}\right]} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)\right) \\
& +\delta_{s_{j},-\frac{1}{2}} \delta_{j}^{\text {final }}\left(\sqrt{\frac{\mathcal{P}_{q q}}{2 \mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left[\tilde{p}_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)+\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q q}}{2 \mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left\langle q_{i} \tilde{p}_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)\right. \\
& \left.+\sqrt{\frac{\mathcal{P}_{g q}}{2 \mathcal{C}_{\mathrm{F}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left[q_{i} \tilde{p}_{j}\right]} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)+\sqrt{\frac{\left(1-z_{i}\right)^{2} \mathcal{P}_{g q}}{2 \mathcal{C}_{\mathrm{F}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left\langle\tilde{p}_{j} q_{i}\right\rangle} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)\right) \\
& +\delta_{s_{j}, 1} \delta_{j}^{\text {final }}\left(\sqrt { \frac { (1 - z _ { i }) ^ { 2 } \mathcal { P } _ { q g } } { 2 T _ { \mathrm { R } } (1 - 2 z _ { i } (1 - z _ { i })) } } \frac { 1 } { [\tilde { p } _ { j } q _ { i }] } (\mathbb { W } ^ { i j } - \mathbb { 1 }) \left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{1} \mathbb{P}_{j}^{2} \mathbb{S}^{\left.\mathbb{S}^{\frac{1}{2}}\right)}\right.\right. \\
& +\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q g}}{2 T_{\mathrm{R}}\left(1-2 z_{i}\left(1-z_{i}\right)\right)}} \frac{1}{\left[\tilde{p}_{j} q_{i}\right]}\left(\mathbb{W}^{i j}-\mathbb{1}\right)\left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{2} \mathbb{S}^{-\frac{1}{2} i}\right) \\
& +\sqrt{\frac{\mathcal{P}_{g g}}{2 \mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left\langle q_{i} \tilde{p}_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right) \\
& \left.+\sqrt{\frac{z_{i}^{4} \mathcal{P}_{g g}}{2 \mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left[q_{i} \tilde{p}_{j}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)+\sqrt{\frac{\mathcal{P}_{g g}\left(1-z_{i}\right)^{4}}{2 \mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left[\tilde{p}_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{P}_{j}^{1} \mathbb{S}^{+1_{i}}\right)\right) \\
& +\delta_{s_{j},-1} \delta_{j}^{\text {final }}\left(\sqrt { \frac { (1 - z _ { i }) ^ { 2 } \mathcal { P } _ { q g } } { 2 T _ { \mathrm { R } } (1 - 2 z _ { i } (1 - z _ { i })) } } \frac { 1 } { \langle q _ { i } \tilde { p } _ { j } \rangle } (\mathbb { W } ^ { i j } - \mathbb { 1 }) \left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{1} \mathbb{P}_{j}^{2} \mathbb{S}^{\left.\mathbb{S}^{\frac{1}{2}}{ }^{i}\right)}\right.\right. \\
& +\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q g}}{2 T_{\mathrm{R}}\left(1-2 z_{i}\left(1-z_{i}\right)\right)}} \frac{1}{\left\langle q_{i} \tilde{p}_{j}\right\rangle}\left(\mathbb{W}^{i j}-\mathbb{1}\right)\left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{2} \mathbb{S}^{+\frac{1}{2}}{ }_{i}\right) \\
& +\sqrt{\frac{\mathcal{P}_{g g}}{2 \mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left[\tilde{p}_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right) \\
& \left.+\sqrt{\frac{z_{i}^{4} \mathcal{P}_{g g}}{2 \mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left\langle\tilde{p}_{j} q_{i}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)+\sqrt{\frac{\mathcal{P}_{g g}\left(1-z_{i}\right)^{4}}{2 \mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left\langle q_{i} \tilde{p}_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{P}_{j}^{1} \mathbb{S}^{-1_{i}}\right)\right) \\
& +\delta_{s_{j}, \frac{1}{2}} \frac{\text { initial }}{\frac{1}{z_{i}}}\left(\sqrt{\frac{\mathcal{P}_{q q}}{\mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left\langle q_{i} p_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)+\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q q}}{\mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left[p_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)\right. \\
& +\sqrt{\frac{\left(1-z_{i}\right)^{2} \mathcal{P}_{q g}}{n_{f} \mathcal{C}_{F}\left(1-2 z_{i}\left(1-z_{i}\right)\right)}} \frac{1}{\left[p_{j} q_{i}\right]} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right) \\
& \left.+\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q g}}{n_{f} \mathcal{C}_{F}\left(1-2 z_{i}\left(1-z_{i}\right)\right)}} \frac{1}{\left\langle q_{i} p_{j}\right\rangle} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)\right) \\
& +\delta_{s_{j},-\frac{1}{2}} \delta_{j}^{\text {initial }} \sqrt{\frac{1}{z_{i}}}\left(\sqrt{\frac{\mathcal{P}_{q q}}{\mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left[p_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)+\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q q}}{\mathcal{C}_{\mathrm{F}}\left(1+z_{i}^{2}\right)}} \frac{1}{\left\langle q_{i} p_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)\right. \\
& +\sqrt{\frac{\left(1-z_{i}\right)^{2} \mathcal{P}_{q g}}{n_{f} \mathcal{C}_{F}\left(1-2 z_{i}\left(1-z_{i}\right)\right)}} \frac{1}{\left\langle q_{i} p_{j}\right\rangle} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right) \\
& \left.+\sqrt{\frac{z_{i}^{2} \mathcal{P}_{q g}}{n_{f} \mathcal{C}_{F}\left(1-2 z_{i}\left(1-z_{i}\right)\right)}} \frac{1}{\left[p_{j} q_{i}\right]} \mathbb{W}^{i j}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)\right) \\
& +\delta_{s_{j}, 1} \delta_{j}^{\text {initial }} \sqrt{\frac{1}{z_{i}}}\left(\sqrt{\frac{2 n_{f} \mathcal{P}_{g q}}{T_{\mathrm{R}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left\langle p_{j} q_{i}\right\rangle}\left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{2} \mathbb{S}^{+\frac{1}{2}}{ }_{i}\right)\right. \\
& +\sqrt{\frac{2 n_{f}\left(1-z_{i}\right)^{2} \mathcal{P}_{g q}}{T_{\mathrm{R}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left[q_{i} p_{j}\right]}\left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{1} \mathbb{P}_{j}^{2} \mathbb{S}^{-\frac{1}{2} i}\right)+\sqrt{\frac{\mathcal{P}_{g g}}{\mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left\langle q_{i} p_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right) \\
& \left.+\sqrt{\frac{z_{i}^{4} \mathcal{P}_{g g}}{\mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left[q_{i} p_{j}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right)+\sqrt{\frac{\mathcal{P}_{g g}\left(1-z_{i}\right)^{4}}{\mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left\langle q_{i} p_{j}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{P}_{j}^{1} \mathbb{S}^{-1_{i}}\right)\right) \\
& +\delta_{s_{j},-1} \delta_{j}^{\text {initial }} \sqrt{\frac{1}{z_{i}}}\left(\sqrt{\frac{2 n_{f} \mathcal{P}_{g q}}{T_{\mathrm{R}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left[q_{i} p_{j}\right]}\left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{2} \mathbb{S}^{-\frac{1}{2} i}\right)\right. \\
& +\sqrt{\frac{2 n_{f}\left(1-z_{i}\right)^{2} \mathcal{P}_{g q}}{T_{\mathrm{R}}\left(2-2 z_{i}+z_{i}^{2}\right)}} \frac{1}{\left\langle p_{j} q_{i}\right\rangle}\left(\mathbb{T}_{j}^{q} \otimes \mathbb{P}_{j}^{1} \mathbb{P}_{j}^{2} \mathbb{S}^{+\frac{1}{2}}\right)+\sqrt{\frac{\mathcal{P}_{g g}}{\mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left[p_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{-1_{i}}\right) \\
& \left.+\sqrt{\frac{z_{i}^{4} \mathcal{P}_{g g}}{\mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left\langle p_{j} q_{i}\right\rangle}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{S}^{+1_{i}}\right)+\sqrt{\frac{\mathcal{P}_{g g}\left(1-z_{i}\right)^{4}}{\mathcal{C}_{\mathrm{A}}\left(1-z_{i}+z_{i}^{2}\right)^{2}}} \frac{1}{\left[p_{j} q_{i}\right]}\left(\mathbb{T}_{j}^{g} \otimes \mathbb{P}_{j}^{1} \mathbb{S}^{+1_{i}}\right)\right) .
\end{aligned}
$$

Forshaw, Holguin \& Plätzer, 1905.08686

Quantum MC

- Bauer, Nachman, Provasoli \& de Jong, 1904.03196

FIG. 1: Quantum circuit block for one step, to be repeated N times for the full circuit.

FIG. 8: Decomposition of the U_{+}gate for integers as large as a, where $\ell=\left\lceil\log _{2}(a)\right\rceil$.

Hadronisation

- Unexplained features: e.g. soft photon excess

$$
\begin{aligned}
& \text { Core: } \Delta \theta<0.1
\end{aligned}
$$

DELPHI, 1004.1587

Resummation Issues

- SCET vs "traditional": EW Sudakov
- Coloured final states
- Factorisation

Electroweak Sudakov

- SCET approach (Manohar \& Waalewijn, 1802.08687)
- μ-anomalous dimension has In v terms and v.v.
- Resum logs by double evolution:

- Equivalent to angular evolution with $\alpha w\left(\mathrm{p}_{\mathrm{t}}\right)$ (Bauer \& BW, 1808.08831) - why?

Coloured Final States

- Resummation:
- Soft function incorporates soft wide-angle ISR and FSR and interference
- Parton Showers:
- How well do different dipole initial scales ($\mathrm{p}_{\mathrm{i}} \mathrm{p} \mathrm{p}$) approximate this?

Factorisation

- MPI/UE leads to violation for certain observables, e.g. $E T=\Sigma\left|p_{T}\right|$, beam thrust, \ldots
- Does it make sense to use these as factorisation scales?

Conclusions?

- Both PS and R are (still) very active fields
- Aiming for precision to make full use of LHC data
- PS issues: recoils, correlations, NLO, ...
- R issues: SCET vs trad, coloured FS, multivariable, ...
- Plenty to be done (by you!)

Thanks

Backup

$$
q \frac{\partial}{\partial q} Q^{-}(x, q)=-\frac{\alpha_{2}}{\pi} C_{F} \int_{0}^{1-m_{W} / q} \frac{d z}{z} P_{f f}(z)\left[\frac{1}{3} Q^{-}(x / z, q)+z Q^{-}(x, q)\right]
$$

- Define $F(q)=\int_{0}^{1} d x x Q^{-}(x, q)=\int_{0}^{1} d x x\left[u_{L}(x, q)-d_{L}(x, q)\right]$
- Then $q \frac{d F}{d q}=-\frac{\alpha_{2}}{\pi} C_{F} \int_{0}^{1-m_{W} / q} d z P_{f f}(z) \frac{4}{3} F(q)$

$$
\text { where } C_{F} \int_{0}^{1-m_{W} / q} d z P_{f f}(z) \sim \frac{3}{2} \ln \left(\frac{q}{m_{W}}\right) \quad\left[C_{F}=3 / 4 \text { for } \mathrm{SU}(2)\right]
$$

- Hence

$$
F(q) \sim F\left(m_{W}\right) \exp \left[-\frac{\alpha_{2}}{\pi} \ln ^{2}\left(\frac{q}{m_{W}}\right)\right]
$$

- For LLA resummation: $\quad \alpha_{2} \rightarrow \alpha_{2}(q(1-z))$

Polarised Splitting Functions

- For any gauge interaction $G=S U(3), S U(2), U(1)$ (neglecting azimuthal correlations)

$$
\begin{aligned}
& P_{f_{L} f_{L}, G}^{R}(z)=P_{f_{R_{R}} f_{R} G}^{R}(z)=\frac{2}{1-z}-(1+z), \\
& P_{V_{+} f_{L}, G}^{R}(z)=P_{V-f_{R}, G}^{R}(z)=\frac{(1-z)^{2}}{z}, \\
& P_{V_{-} f_{L}, G}^{R}(z)=P_{V_{+} f_{R}, G}^{R}(z)=\frac{1}{z}, \\
& P_{f_{L} V_{+}, G}^{R}(z)=P_{f_{R} V_{-}, G}^{R}(z)=\frac{1}{2}(1-z)^{2}, \\
& P_{f_{L} V_{-}, G}^{R}(z)=P_{f_{R} V_{+}, G}^{R}(z)=\frac{1}{2} z^{2}, \\
& P_{V_{+} V_{+}, G}^{R}(z)=P_{V_{-}-, G}^{R}(z)=\frac{2}{1-z}+\frac{1}{z}-1-z(1+z), \\
& P_{V_{+}+, G-G}^{R}(z)=P_{V_{V} V_{+}, G}^{R}(z)=\frac{(1-z)^{3}}{z}, \\
& P_{H H, G}^{R}(z)=\frac{2}{1-z}-2,
\end{aligned}
$$

