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What are we trying to achieve?

• Fixed order: few % over understood ranges 

• Resummed: few times FO over extended ranges 

• Parton shower: few times RS for most IRC-safe   
PLUS ~10% (tunable) for many IRC-unsafe

Plausible uncertainties for IRC-safe observables:



Parton Shower Issues
• Generator dependence: 

• Evolution variables: q2, pt, θ, “time”,…  

• Partons vs dipoles 

• Recoil schemes 

• NLO splitting 

• Subleading colour 

• Quantum correlations (spin, EW, …) 

• Hadronization



PS Generator Dependence
• Dijet pt (parton level)
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FIG. 4. Cone size dependence of the ratio of the one jet inclusive cross section dσ/dPT calculated by full

Pythia to the same cross section calculated by Pythia with no non-perturbative input. The curves are

labeled as in Fig. 3.

shower. Then we look at the ratio to the Born cross section, dσ(LO)/dPT:

r(PT) =
dσ(std.)/dPT

dσ(LO)/dPT
. (23)

For dσ(std.)/dPT calculated with Deductor, we use the default Λ ordering, but we also try kT

ordering.

We can do the same thing using the parton level showering produced by Pythia [2] and

Dire [66]. For dσ(LO)/dPT, we use the Born cross section produced by these programs. For

dσ(std.)/dPT, we use Pythia and Dire with no underlying event, no hadronization, and no pri-

mordial kT. In Pythia and Dire, there is no threshold factor to turn off. We set the minimum

pT in shower splittings in Pythia to 1 GeV, which is a change from the default value 0.5 GeV. In

Dire, we retain the default, pmin
T = 1.732 GeV. We retain the default factorization scale setting in

Pythia and Dire, µF = PBorn
T , where PBorn

T is the transverse momentum of the hard scattering.

This is then the starting scale for the shower. For αs at the hard interaction, we set αs(M2
Z) = 0.118

and use the renormalization scale µR = PT/
√
2, although this αs cancels in the ratio r in Eq. (23).
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FIG. 5. Ratio r(PT) of the one jet inclusive cross section dσ/dPT calculated after showering to the cross

section at the Born level according to (from top to bottom) Pythia, Dire, Deductor with Λ ordering,

and also Deductor with kT ordering. The bands represent the Monte Carlo statistical error.

We use CT14 NLO parton distributions in each case. For other parameters, we use the default

choices in Pythia and Dire. For Deductor, we use the parameters from Sec. IVA.

We exhibit r(PT) for Deductor with Λ ordering, Deductor with kT ordering, Pythia, and

Dire in Fig. 5. We can make three observations. First, Pythia, and Dire and Deductor give

substantially different results for r(PT), while the two orderings for Deductor give results that

differ by about 5%. Second, r(PT) for Deductor and, to a lesser extent for Dire, is substantially

smaller than 1. Third, there is some dependence on PT, but it is not large.

The calculated results depend on the starting scale for the shower, µs. For Pythia, Dire, and

Deductor with kT ordering, this is µs = PBorn
T . For Deductor with Λ ordering, the starting

scale for Λ is µs = (3/2)PBorn
T , Eq. (12). If we were to use µs = PBorn

T for Deductor with Λ

ordering, the result would change slightly, as we will see later in Fig. 15.

One would expect that the effect of the jet algorithm would depend on the value of R: for
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PS Generator Dependence
• Quark-gluon tagging: track width & multiplicity

ATLAS,1405.6583
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Figure 20: The CMS q/g tagging efficiency for a fixed
working point of the tagger. The dashed (dotted) lines
show the Herwig (Pythia) performance before reweighting,
while the symbols show the performance after reweighting
for quarks in blue and gluons in red. Reproduced from
Ref. [59].
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Figure 21: The two-dimensional q/g likelihood with AT-
LAS data (left) and simulation (right). Reproduced from
Ref. [96].

in Fig. 20). In particular, multiple samples with a differ-
ent (but known) q/g composition can be used to extract
the distribution of q/g tagging observables. ATLAS and
CMS have both used Z/�+jets and dijet samples, which
are enriched in quark and gluon jets, respectively.

The Run 2 ATLAS tagger is based entirely on dijets,
exploiting the rapidity dependence of the q/g fraction to
extract the track multiplicity separately for quarks and
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Figure 22: The average track multiplicity in ATLAS for
Z/�+jets (quark-enriched) and dijets (gluon-enriched).
The dashed lines indicate the measurement on the vali-
dation samples : Z/�+2-jets (quark-enriched) and trijets
(gluon-enriched). Reproduced from Ref. [97].

gluons. A Run 1 measurement is used to constrain the
particle-level modeling, and dedicated track reconstruc-
tion uncertainties are used to complement the particle-
level uncertainty with a Run 2 detector-level uncertainty.
The uncertainties on q/g tagging are 2-5% over a wide
range of 200GeV . pT . 1TeV at a working point of
60% quark jet efficiency [98]. The template-based calibra-
tion can also be used to directly construct the q/g tagger
in data, avoiding mis-modeling concerns; however, when
more than two observables are used to construct the tag-
ger, it becomes impossible in practice to extract the high-
dimensional templates.

Despite its power, the template technique has some
residual non-closure because the resulting calibrated tag-
ger applied to another final state may not have the same
performance. This is illustrated in Fig. 22, which shows
how the average track multiplicities extracted for quark
and gluon jets (using high-purity Z/�+jets and dijets data
respectively) differ from the values obtained in the �+2-jet
and trijet samples used for validation.

Explicit tagging is often the focus of modern q/g dis-
crimination, but there is a broad program of implicit tag-
ging as well. One ubiquitous example of this is the ATLAS
jet calibration procedure. Since the calorimeter response
is non-linear, a jet with a higher particle multiplicity will
have a lower response for the same energy. After applying
a simulation-based correction to eliminate this inclusive
bias in the JES (see Figure 6), a residual calibration is ap-
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in Fig. 20). In particular, multiple samples with a differ-
ent (but known) q/g composition can be used to extract
the distribution of q/g tagging observables. ATLAS and
CMS have both used Z/�+jets and dijet samples, which
are enriched in quark and gluon jets, respectively.

The Run 2 ATLAS tagger is based entirely on dijets,
exploiting the rapidity dependence of the q/g fraction to
extract the track multiplicity separately for quarks and
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Figure 22: The average track multiplicity in ATLAS for
Z/�+jets (quark-enriched) and dijets (gluon-enriched).
The dashed lines indicate the measurement on the vali-
dation samples : Z/�+2-jets (quark-enriched) and trijets
(gluon-enriched). Reproduced from Ref. [97].

gluons. A Run 1 measurement is used to constrain the
particle-level modeling, and dedicated track reconstruc-
tion uncertainties are used to complement the particle-
level uncertainty with a Run 2 detector-level uncertainty.
The uncertainties on q/g tagging are 2-5% over a wide
range of 200GeV . pT . 1TeV at a working point of
60% quark jet efficiency [98]. The template-based calibra-
tion can also be used to directly construct the q/g tagger
in data, avoiding mis-modeling concerns; however, when
more than two observables are used to construct the tag-
ger, it becomes impossible in practice to extract the high-
dimensional templates.

Despite its power, the template technique has some
residual non-closure because the resulting calibrated tag-
ger applied to another final state may not have the same
performance. This is illustrated in Fig. 22, which shows
how the average track multiplicities extracted for quark
and gluon jets (using high-purity Z/�+jets and dijets data
respectively) differ from the values obtained in the �+2-jet
and trijet samples used for validation.

Explicit tagging is often the focus of modern q/g dis-
crimination, but there is a broad program of implicit tag-
ging as well. One ubiquitous example of this is the ATLAS
jet calibration procedure. Since the calorimeter response
is non-linear, a jet with a higher particle multiplicity will
have a lower response for the same energy. After applying
a simulation-based correction to eliminate this inclusive
bias in the JES (see Figure 6), a residual calibration is ap-
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CMA-PAS-JME-16-003
• Pythia good for quarks, not so good for gluons 

• Herwig better for gluons



PS Generator Dependence
• Quark-gluon tagging: jet images
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Figure 11: Gluon jet rejection as a function of the quark jet e�ciency comparing Pythia to (a) Sherpa and (b)
Herwig for jets with 150 < pT < 200 GeV.

3.6 Visualizing learned information

In order to gain a deeper understanding of the physics learned by the CNN tagger, we examine how the
internal structure of the network relates to the properties of quark and gluon jets, following the strategy
outlined in Ref. [38]. Figure 12 shows, for each pixel of the jet image, the Pearson Correlation Coe�cient
of the pixel intensity with the final CNN tagger output. The intensity of the four pixels at the core of the jet
are strongly correlated with CNN tagger output and are thus important to identify quark jets. The intensity
of outer pixels in the jet image are instead anti-correlated with the CNN tagger output, in agreement with
the intutition that gluon jets tend to feature a wider radiation pattern.

The discriminating information extracted by each convolutional filter can also be investigated. This is
done by visualizing the average di↵erence between the convolution of each filter with the input image for
quark and gluon jets. More formally, let Iq and Ig be the average quark and gluon jet images, respectively.
The average di↵erence between the convolution of a filter wi is obtained by computing Iq ⇤ wi � Ig ⇤ wi ,
where ⇤ represents the convolution operator. The visualizations for the first convolutional layer of the
CNN tagger are shown in Figure 13. As the images are not rotated prior to training, many of the filters are
simply rotations of other filters. Some of the filters show features that are readily interpretable in terms of
physical notions such as the soft haze around a jet core, but others are more complex and require further
study to understand.

The visualizations in Figures 12 and 13 are an important start to probing what the CNN is learning about
the jet radiation pattern.
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• Pythia, Sherpa similar, Herwig less



Dire Shower vs ME

Dasgupta, Dreyer, Hamilton & Salam, 1805.09327
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Figure 3: (a) Illustration of the modification of the transverse momentum (upper panel)

and rapidity (lower panel) of gluon 1 after emission of gluon 2, shown as a function of

the rapidity of gluon 2. Prior to emission of gluon 2, gluon 1 originally has a rapidity

⌘g1 ' 2.3 and transverse momentum ep?,g1 = v1 = 10�6
Q (v1 = 10�6

Q and 1 � z1 =

10�5). Gluon 2 has v2 = 1
2v1 and is emitted parallel in azimuth to gluon 1. To help

guide the eye, four regions of gluon 2 rapidity are labelled according to the identity of the

parton that branches and that of the spectator. The results have been obtained using a

numerical implementation of the kinematic maps of section 2. The transverse momentum

shifts in (a) can be reinterpreted in terms of the e↵ect they have on the e↵ective matrix

element for double-soft emission. Plot (b) shows the ratio of this e↵ective matrix element

to the true one, as a function of the azimuthal angle between the two emissions and their

transverse-momentum ratio (in a specific “diamond” region of widely separated rapidities,

cf. Appendix A). For simplicity, the matrix-element ratio is given in the large-Nc limit.

that this issue with subleading Nc terms will also a↵ect those double logarithms. We will

investigate this in section 4.1.

We should note that issues with the attribution of colour factors beyond leading NC in

dipole showers have been highlighted in a range of previous work, e.g. Refs. [36, 53, 79, 80].

Our analysis in this subsection is close in particular to that of Ref. [53]. We also note

that approaches to obtain the correct subleading colour factor for at least the main soft-

collinear divergences have existed for some time. The classification that is implied by

angular ordering (see also Ref. [52]) provides a guide in this direction, as was articulated

for a dipole shower in Ref. [53] and found to be relevant for particle multiplicities at LHC

energies [54]. Another proposal is that of Ref. [79].

– 15 –



Dipole vs Parton 
Showers



Parton vs Dipole Showers
• Parton Shower 

• Simple 1-to-2 splittings: fewer recoil ambiguities 

• Colour structure simple at DL, NDL 

• Soft azimuthal correlations missing 

• Dipole shower 

• 2-to-3 splittings mean more recoil ambiguities 

• Colour structure more difficult, even at DL 

• Azimuthal correlations included



kt-ordered dipole shower



Angular-ordered parton shower
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• Some azimuthal correlations lost through averaging
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• AOPS vs Exact LOME (Madgraph) 

• A=collinear-soft, B=collinear-nonsoft 

• C not reliable (but improves agreement)

Figure 1: Di↵erential distribution of L = ln(1/ycut) in h ! 3 and 4 glu-
ons. Points are MadGraph data using leading-order exact matrix elements.
Dashed, dot-dashed and solid curves show the leading-log, NLL and NNLL
results, respectively.

9

Figure 4: Di↵erential distribution of L = ln(1/ycut) in Z0
! dd̄+ 1 and

2 gluons. Points are MadGraph data using leading-order exact matrix ele-
ments. Dashed, dot-dashed and solid curves show the leading-log, NLL and
NNLL results, respectively.
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NLO Showers
• Höche, & Prestel, 1705.00742, & Krauss1705.00982 

• Include NLO terms in 1→2 (q→q’ differential) 

• Dulat, Höche & Prestel, 1805.03757 

• Differential double soft vs CMW
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FIG. 7. The impact of subtracted real-emission corrections, Eq. (59), and endpoint terms, Eq. (60) on the radiation pattern
in e+e� !hadrons at LEP I energies. We show the contributions from q ! qgg (left) and q ! qq0q̄0 (right) to the di↵erential
2 ! 3 (red) and 3 ! 4 (right) jet rates in the Durham algorithm.
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Appendix A: Real-emission corrections to soft-gluon radiation

This appendix details the computation of the real-emission corrections listed in Eqs. (19)-(20). We perform the
calculation separately in the strong ordering approximation, for the soft remainder term, and for the two collinear
contributions in Eqs. (7).



Subleading Colour
• Isaacson & Prestel, 1806.10102 use colour-flow basis6
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FIG. 2. Examples of possible splittings in the fixed color shower. The upper two rows show all possible splittings for a red
quark, while the lower two rows show all splittings of a red-antigreen gluon. Note that in all cases, we implement one kernel
for soft-tagged emission and one kernel for soft-tagged radiator.

C. Color Flow Sampling

The overall color factor exponentiated into no-emission probabilities now correctly recovers the full color correlator
(Eq. 2). To allow the iteration of the stochastic color sampling algorithm once a branching has been accepted, it
is necessary to choose a definite color structure for the branching. This choice has to be commensurate with the
contribution of the particular color configuration to the overall color factor. To obtain the correct result in the color

flow basis, the color operators can be separated into di↵erent components, depending on if the splitting is P (9)
qq , P (1)

qq ,

P (9)
qq , P (1)

qq , P (+)
gg , or P (�)

gg . Six possible color structures for the radiator and six possible color structures for the
spectator are allowed for given emitter ij with color ci and spectator k with anticolor ck, giving in total 36 possible
configurations. Possible splittings of a red quark and a red-antigreen gluon are illustrated in Fig. 2. An additional
event weight needs to be applied to correctly account for picking one definite (out of 36 possible) color structures.

The correction is obtained by first calculating the “color weight” for each one of the 36 possible configurations,

P↵� = |hM
0
|t↵k · t�ij |Mi| , (12)

where t↵k is one of the six possible color factors for the color insertion on the spectator line acting on hM
0
|, and t�ij is

color insertion on the radiator line acting on |Mi. The absolute value ensures a positive definite probability to pick
one color structure,

P =
P↵�P
↵,� P↵�

. (13)

The color structure can then be chosen probabilistically according to Eq. 13. Finally, to obtain the correct weight for
the branching, the sign of this contribution to the overall color factor needs to be reinstated. Hence, an additional

• Negative weights: MC efficiency?  Looks OK …



Subleading Colour
• Isaacson & Prestel, 1806.10102

9

LC shower (parton level)
FC shower (parton level)10�2

10�1

1

10 1
r46,34 = s46/s34

ds
/d

r 4
6,

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

r46,34

R
at

io

(a)

LC shower (parton level)
FC shower (parton level)10�2

10�1

1

10 1

r56,34 = s56/s34

ds
/d

r 5
6,

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

r56,34

R
at

io

(b)

LC shower (parton level)
FC shower (parton level)10�1

1

k364 = (s36s46)/(s34s3456)

ds
/d

k 3
64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

k364

R
at

io

(c)

LC shower (hadron level)
FC shower (hadron level)10�2

10�1

1

10 1
r46,34 = s46/s34

ds
/d

r 4
6,

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

r46,34

R
at

io

(d)

LC shower (hadron level)
FC shower (hadron level)10�2

10�1

1

10 1

r56,34 = s56/s34

ds
/d

r 5
6,

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

r56,34

R
at

io

(e)

LC shower (hadron level)
FC shower (hadron level)10�1

1

k364 = (s36s46)/(s34s3456)

ds
/d

k 3
64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

k364

R
at

io

(f)

FIG. 3. Comparison of the LC parton shower to the FC parton shower. The definition of the dijet mass ratios rij,kl and the
scaled jet eikonal can be found in the main text. The upper row gives parton level results, while the lower row shows results
at hadron level. are defined using the Durham algorithm [31] as implemented in the
textscFastjet package [32], clustering to exactly four jets with pT > 3 GeV. All figures have been produced using RIVET [33].
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FIG. 4. Thrust as measured by ALEPH [38] and imple-
mented in RIVET [33], compared to leading color and
fixed color parton showers.
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FIG. 5. Total jet broadening as measured by ALEPH [38]
and implemented in RIVET [33], compared to leading
color and fixed color parton showers.
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FIG. 6. Jet separation between two- and three-jet con-
figurations in the Durham algorithm, as measured by
OPAL [39] and implemented in RIVET [33], compared
to leading color and fixed color parton showers.
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FIG. 7. Jet separation between three- and four-jet con-
figurations in the Durham algorithm, as measured by
OPAL [39] and implemented in RIVET [33], compared
to leading color and fixed color parton showers.

spectra in the FC parton shower. This is expected because of the inclusion of depleting sub-leading corrections. The
kinematics of these corrections is, in our algorithm, completely determined by the splitting |Mi, and not influenced
by the potentially di↵erent propagator structure of splittings in hM|. The data comparison raises the question if
subleading color corrections can really be treated independently from other, kinematic, corrections. We believe that
this study gives important input for future developments of more accurate parton showers.

V. CONCLUSIONS AND OUTLOOK

This articles has presented the first implementation of a fixed color parton shower algorithm that remains numerically
feasible and stable for an arbitrary number of emissions. This has been achieved by leveraging the qualities of the
color flow basis. The growth in complexity has been tamed by employing a stochastic sampling of color configurations.
Remaining numerical instabilities (that could be ameliorated by accumulating higher statistics) have been improved
with the introduction of a cuto↵ on fixed color evolution. This necessitates keeping track of auxiliary events that
allow a matching onto a leading color shower. We have also discussed an infrared safe matching to the Lund string
hadronization model.

Preliminary comparisons to LEP data have been presented. Here, the data description should not be regarded as
final – in particular because known higher-order corrections are not present to avoid double-counting in the fixed
color result – but rather as allowing to assess benefits of di↵erences between leading- and fixed color evolution. These
comparisons indicate an unfavorable trend towards too soft radiation patterns in the fixed color parton shower. This
observation is an important input for e↵orts to define parton showers at higher accuracy, since it suggests that the
exponentiation of complete color correlators without also including multi-parton kinematic correlations (beyond the
three-particle correlations given by Eq. 2) might have undesirable consequences.

The algorithm has been implemented as stand-alone Python code that was interfaced to Pythia via Les Houches
files. A natural next step is to extend the fixed color evolution also to initial-state splittings. Due to the handling
of multiple parton interactions and beam remnants, this will require a more native implementation within the event
generator framework. Further logical next steps would be the introduction of O(↵2

s) corrections to allow recovering
the two-loop cusp-anomalous dimension, and the inclusion of multi-parton kinematic correlations. In the future it will
be important to study the complex interplay of sub-leading color, kinematics, and higher order corrections to better
describe the data.
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EPR Correlations

• where  

• Fully included in Herwig (CKR method)
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CKR Method

• Backtracking essential for linear algorithm
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Fig. 1. Forward evolution: (a) the order in which the various matrices are calculated; (b) schematic representation of the algorithm at
a particular vertex.
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Note the normalisation of the p-matrices is necessary to preserve their probabilistic interpretation, while
that of the D-matrices is unnecessary, but proves to be convenient.
The algorithm is based on using unconditional probabilities to generate the branchings whenever

incomplete information is available on a daughter parton’s eventual evolution, and conditional probabili-
ties whenever it is possible to incorporate information on the particular exclusive evolution channel
chosen. This means that the identity is used for the decay matrix of any undeveloped parton, i.e. a parton
which has not been completely evolved. This is justified by noting that unitarity implies that the sumof the
decay matrices representing all the possible evolutions of a parton a is given by:
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Fig. 9: The analytic result for the di↵erence in az-
imuthal angle between the planes of the two branchings in
h0

! gg ! qq̄q0q̄0 compared to the distributions predicted
using the angular-ordered (QS) and dipole (DS) parton
showers in Herwig7. The angular-ordered shower (QS-
CorrO↵) and dipole shower (DS-CorrO↵) predictions
without spin correlations are included for comparison. The
result obtained from a sample of LO events generated us-
ing MadGraph5 aMC@NLO (LO) is also shown.

predicted using the angular-ordered and dipole parton
showers are shown in Fig. 10 and Fig. 11 respectively. In
each plot we also include the result obtained from a sample
of LO events generated using MadGraph5 aMC@NLO
for comparison.

In Fig. 10 we include predictions obtained using the
angular-ordered parton shower with and without spin cor-
relations. When spin correlations are not included in the
parton shower the predicted distribution is simply a flat
line. We find that, with spin correlations included in the
parton shower, the angular-ordered parton shower predic-
tion is similar to the LO prediction with some di↵erences
in shape due to corrections beyond the collinear limit.

The predictions obtained using the dipole parton
shower display more complex behaviour and we have in-
cluded several results in Fig. 11. We first note that the pre-
diction produced using the dipole parton shower without
spin correlations is not flat. This is due to the treatment of
splitting recoils. In initial-initial dipoles the recoil in split-
tings is distributed amongst all outgoing particles other
than the new emission, and in initial-final dipoles the out-
going spectator gains a transverse component to its mo-
mentum. The momentum of the outgoing quark produced
in the first splitting is therefore changed in a non-trivial
way in the second splitting and this gives rise to a direc-
tional preference of the second splitting relative to the first
splitting. This behaviour necessarily a↵ects the prediction
when spin-correlations are included and gives rise to the
corresponding distribution in Fig. 11.
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Fig. 10: The di↵erence in azimuthal angle between the
planes of two initial-state g ! qq̄ branchings in gg ! h0

predicted using the angular-ordered (QS) parton shower
in Herwig7. The angular-ordered parton shower (QS-
CorrO↵) prediction without spin correlations is also
included. The result obtained from a sample of LO
events generated using MadGraph5 aMC@NLO (LO)
is shown for comparison.

In order to demonstrate that the e↵ects seen in the
dipole parton shower predictions are indeed due to the
treatment of recoil momenta in splittings, we have also
included results obtained using a modified version of the
dipole parton shower. In this modified parton shower we
only allow splittings o↵ initial-initial dipoles and we have
modified the behaviour of these splittings such that the
splitting recoil is entirely absorbed by the outgoing Higgs
boson in both of the splittings. With these modifications
the direction of the quark produced in the first splitting is
not modified in the second splitting and when spin corre-
lations are not included the predicted distribution is a flat
line. As such the prediction with spin correlations included
displays better agreement with the angular-ordered par-
ton shower and LO predictions. Again there are di↵erences
in shape between the dipole parton shower prediction and
the LO prediction due to corrections beyond the collinear
limit.

Similar problems with the default recoil scheme in
dipole parton showers were recently observed in Ref. [31]
where it was shown that the same change in the recoil
strategy we have used resolved issues with the logarith-
mic accuracy of the parton shower.

3.3 Correlations in Decay Processes

The spin correlations in the hard process can also af-
fect the distribution of the particles produced in the sub-
sequent decay of unstable particles, such as the top quark,



• Different dipole options 
illustrate recoil ambiguity
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Fig. 11: The di↵erence in azimuthal angle between the
planes of two initial-state g ! qq̄ branchings in gg ! h0

predicted using the dipole parton shower (DS) in Her-
wig7. The dipole parton shower (DS-CorrO↵) prediction
without spin correlations is also included. Predictions ob-
tained using the dipole parton shower restricted to al-
low branchings from II dipoles only and with a modi-
fied handling of splitting recoils, as described in the text,
are shown with (DS-II) and without (DS-II-CorrO↵) spin
correlations. The result obtained from a sample of LO
events generated using MadGraph5 aMC@NLO (LO)
is shown for comparison.

and also give correlations between the decay products of
di↵erent unstable particles. As we are interested in cor-
relations in the parton shower, in this section we look at
correlations in the decay of a coloured particle, namely the
top quark. Fig. 12 shows the azimuthal separation of the
charged leptons in dileptonic pp ! tt̄ events at a centre-
of-collision energy of 8 TeV, measured by CMS. In addi-
tion we show the predictions of this distribution obtained
using the angular-ordered and dipole parton showers in
Herwig7. The hard process is produced using a LO ma-
trix element. In the angular-ordered shower the top-quark
decays are corrected to NLO in QCD while in the dipole
shower no such correction is applied to obtain these pre-
dictions. There is reasonable agreement between the ex-
perimental result and both parton shower algorithms in-
cluding spin correlations whereas the results without spin
correlations clearly fail to describe the data.

4 Conclusions

We have implemented the spin correlation algorithm
of Refs. [14–18] in the angular-ordered and dipole parton
showers in Herwig7. This feature will be available for
public use in Herwig7.2. We have compared the predic-
tions obtained using each of the parton showers in Her-
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Fig. 12: The azimuthal separation of the charged lep-
tons in 8 TeV dileptonic pp ! tt̄ events, as measured by
CMS [32] and predicted using the angular-ordered (QS)
and dipole (DS) parton showers in Herwig7. The predic-
tions of the angular-ordered (QS-CorrO↵) shower and the
dipole shower (DS-CorrO↵) without spin correlations are
also shown.

wig7 to analytic calculations or predictions obtained us-
ing a LO ME. Through these comparisons we have con-
firmed that the spin correlation algorithm is functioning
correctly in both showers.

The handling of splitting recoils in the dipole shower
is not formally included in the spin correlation algorithm.
We have discussed these limitations and presented results
that show where these e↵ects are evident. Despite these
limitations, we find that the dipole shower, and the angular-
ordered shower, produce a fairly accurate prediction of a
spin-correlation sensitive observable, namely the azimuthal
separation of the leptons, in pp ! tt̄ events.

While spin correlation e↵ects are often unobservable
in average distributions, as we have seen there are cases
where they are important. Their implementation in Her-
wig7 is therefore an important part of improving the ac-
curacy of the simulation.
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Fig. 11: The di↵erence in azimuthal angle between the
planes of two initial-state g ! qq̄ branchings in gg ! h0

predicted using the dipole parton shower (DS) in Her-
wig7. The dipole parton shower (DS-CorrO↵) prediction
without spin correlations is also included. Predictions ob-
tained using the dipole parton shower restricted to al-
low branchings from II dipoles only and with a modi-
fied handling of splitting recoils, as described in the text,
are shown with (DS-II) and without (DS-II-CorrO↵) spin
correlations. The result obtained from a sample of LO
events generated using MadGraph5 aMC@NLO (LO)
is shown for comparison.
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shower no such correction is applied to obtain these pre-
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perimental result and both parton shower algorithms in-
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correlations clearly fail to describe the data.
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• Far above EW scale, at q>>mW, we have 
approximately unbroken SU(3)xSU(2)xU(1) 

• Corrections ~ mW/q



• Real-virtual emission mismatch leads to double logarithms of q/mW 

• Define 

• Q+ has DGLAP (single-log) evolution 

• Q- has double-log damping (asymptotic symmetry)
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Momentum fractions in jets
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Figure 1: The momentum averaged fragmentation functions hdki i for (a,b) i = dL, dR, (c,d) eL, eR,
(e,f) W

+
, B, (g,h) W3, g. The di↵erent values of k are stacked on top of each other, such that

the total equals one, as demanded by the sum rule. Dashed/solid lines show DL/NLL resummed
results.
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(f)

Figure 1: The momentum averaged fragmentation functions hdki i for (a,b) i = dL, dR, (c,d) eL, eR,
(e,f) W

+
, B, (g,h) W3, g. The di↵erent values of k are stacked on top of each other, such that

the total equals one, as demanded by the sum rule. Dashed/solid lines show DL/NLL resummed
results.
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(h)

Figure 1: The momentum averaged fragmentation functions hdki i for (a,b) i = dL, dR, (c,d) eL, eR,
(e,f) W

+
, B, (g,h) W3, g. The di↵erent values of k are stacked on top of each other, such that

the total equals one, as demanded by the sum rule. Dashed/solid lines show DL/NLL resummed
results.
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• Similarly in initial-state showering (PDF evolution) 

• uL-dL (& sL-cL) has double-log damping

Bauer, Ferland, BW, 1703.08562
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• Parity violation implies large polarisation effects 

• Azimuthal integration cancels helicity interference 
(could be handled by CKR method)

dL

uL

e�L

W�
±

⌫̄e
z1

z2

xe = z1z2

xe

P (xe) neglecting 
polarization



Mixed State Showering
• Mixed states have different couplings

zz0E

qR,L q0R,L

E zE

�, Z0
<latexit sha1_base64="FMtabewFdWOoOI5D9ziWZMh725k="></latexit>

qL
<latexit sha1_base64="Kk+/fw37g8/2QQ4N1YIcIsEVRdM=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS0NZbwYsHDxWtLbShbLabdunmw92NUEJ/ghcPinj1F3nz37hpK6jog4HHezPMzPMTzqSyrA+jsLK6tr5R3Cxtbe/s7pX3D25lnApC2yTmsej6WFLOItpWTHHaTQTFoc9px5+c537nngrJ4uhGTRPqhXgUsYARrLR0fTe4HJQrlnnWqDluDVmmZdVtx86JU3erLrK1kqMCS7QG5ff+MCZpSCNFOJayZ1uJ8jIsFCOczkr9VNIEkwke0Z6mEQ6p9LL5qTN0opUhCmKhK1Jorn6fyHAo5TT0dWeI1Vj+9nLxL6+XqqDhZSxKUkUjslgUpBypGOV/oyETlCg+1QQTwfStiIyxwETpdEo6hK9P0f/k1jHtqulcuZVmcxlHEY7gGE7Bhjo04QJa0AYCI3iAJ3g2uPFovBivi9aCsZw5hB8w3j4BirWN+A==</latexit>

q0L
<latexit sha1_base64="BJLmhs38kpGG9T5haGoygXFsRRs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvoqSRVbHsrePHgoYJthXYp2TTbhibZNckKZelf8OJBEa/+IW/+G7NtBRV9MPB4b4aZeUEsuLEIfXi5peWV1bX8emFjc2t7p7i71zZRoilr0UhE+jYghgmuWMtyK9htrBmRgWCdYHyR+Z17pg2P1I2dxMyXZKh4yCmxmXR33L/qF0uojBDCGMOM4Oo5cqRer1VwDeLMciiBBZr94ntvENFEMmWpIMZ0MYqtnxJtORVsWuglhsWEjsmQdR1VRDLjp7Nbp/DIKQMYRtqVsnCmfp9IiTRmIgPXKYkdmd9eJv7ldRMb1vyUqzixTNH5ojAR0EYwexwOuGbUiokjhGruboV0RDSh1sVTcCF8fQr/J+1KGZ+WK9dnpUZjEUceHIBDcAIwqIIGuARN0AIUjMADeALPnvQevRfvdd6a8xYz++AHvLdP2F+OHQ==</latexit>B,W 3

<latexit sha1_base64="jAXapiqS2MIl3PR1FQ8+Rj8X/Ic=">AAACF3icdVBLSwMxGMz6rPVV9eglWAQPZUn6oPZW9OKxgn3Adi3ZNG1Dsw+SrFCW/gsv/hUvHhTxqjf/jem2BRUdCAwz8yVfxosEVxqhT2tldW19YzOzld3e2d3bzx0ctlQYS8qaNBSh7HhEMcED1tRcC9aJJCO+J1jbG1/O/PYdk4qHwY2eRMz1yTDgA06JNlIvZyfd9BJHDj03QTaq1UpVXEB2pVqp4IohuIZxGU0vCu3b0rSXyy8zcJmBywzENkqRBws0ermPbj+ksc8CTQVRysEo0m5CpOZUsGm2GysWETomQ+YYGhCfKTdJV5rCU6P04SCU5gQapur3iYT4Sk18zyR9okfqtzcT//KcWA/O3YQHUaxZQOcPDWIBdQhnJcE+l4xqMTGEUMnNrpCOiCRUmyqzpoTlT+H/pFW0cckuXpfz9fqijgw4BifgDGBQBXVwBRqgCSi4B4/gGbxYD9aT9Wq9zaMr1mLmCPyA9f4FQt6bkQ==</latexit>

Chen, Han, Tweedie, 1611.00788

Unbroken phase Broken phase

• Is there an analog of CKR?



right-handed. Thus, each fermion has only one possible spin determined by its helicity and

the sign of its momentum

fi(x, µ) = x

Z
dy

2⇡
e
�i 2xn̄·p y⌦

p
��  ̄(i)(y) n̄/ (i)(�y)

��p
↵
, (2.1)

fī(x, µ) = x

Z
dy

2⇡
e
�i 2xn̄·p y⌦

p
�� (i)(y) n̄/  ̄(i)(�y)

��p
↵
, (2.2)

where µ is the renormalization scale. Since we have separate left- and right-handed PDFs,

for each generation there are a total of 8 quark PDFs and 6 lepton PDFs to consider, giving

a total of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x, µ) =
2

n̄·p

Z
dy

2⇡
e
�i 2xn̄·p y

n̄µn̄
⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W
+ and W

� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W3, however, one needs to be more careful to take the mixed

contributions of these two bosons into account. Such contributions arise from the fact that

the left-handed fermions and Higgs carry both isospin and hypercharge. This implies that

besides B and W3 PDFs one needs to include a mixed PDF, which is given by2

fBW (x) =
2

n̄·p

Z
dy

2⇡
e
�i 2xn̄·p y

n̄
µ
n̄⌫

⌦
p
��Bµ�(y)W
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3 (�y)
��p
↵���
spin avg.

+ h.c. . (2.4)

From these PDFs one can then construct the PDF for the photon, the transversely-polarized

Z
0 and their mixed state as a transformation of the PDF for the B, the W3 and their mixed

state. Using A = cWB + sWW3 and Z
0 = �sWB + cWW3 one finds
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For the electroweak input at scale µ = q0 we have f� 6= 0 and fZ = f�Z = 0, so the input

conditions at that scale are

fB = c
2
W f� , fW3 = s

2
W f� , fBW = 2cW sW f� . (2.6)

After evolving these three unbroken PDFs to a higher scale q, the physical photon and Z
0

PDFs are reconstructed there using the corresponding running values of cW and sW .

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) = x

Z
dy

2⇡
e
�i 2xn̄·p y ⌦

p
���(y)�(�y)

��p
↵
,

(2.7)

2
Note that our definition of the mixed PDF fBW is the sum of BW3 and W3B contributions, and

similarly for the mixed PDF f�Z .
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Mixed U(1)xSU(2) PDF

• Left-handed quarks have isospin and hypercharge, so 
they can generate fBW (ICP = 1+) 

• This means in broken basis we have fγ, fZ and fγZ

Besides	these	“standard”	forward	pdf’s,	one	also	needs	to	
consider	non-forward,	mixed	pdf’s

27

2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.
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To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total

of 42 fermion PDFs.
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Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W
+ and W

� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W3, however, one needs to be more careful to take the mixing

between these two bosons into account. This implies that besides PDFs for each of these

two particles, one needs to include a mixed PDF, which is given by
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From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W
3 and their mixed state. Using

A = cWB + sWW
3 and Z = �sWB + cWW

3 one finds
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Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy

2⇡
e
�i 2xn̄·p y ⌦

p
���(y)�(�y)

��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H
� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.
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This pdf is required to describe mixed processes with Z or 
gamma in initial state
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Besides	these	“standard”	forward	pdf’s,	one	also	needs	to	
consider	non-forward,	mixed	pdf’s
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and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H
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In summary, there are a total of 52 parton distrbution functions that need to be
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Mixed Higgs PDF

•       distinguishes between Higgs and ZL

H0 H0H0 H0 H0H0H0H0

fH fH0 0 fH H0 0 fH H0 0

H
0 =

1p
2
(h� iZL) , H̄

0 =
1p
2
(h+ iZL)

h =
1p
2

�
H

0 + H̄
0
�
, ZL =

ip
2

�
H

0 � H̄
0
�

The relations between the PDFs of B,W
3 and BW in the unbroken basis and those of �, Z

and Z� in the broken basis were given in [1].

For the unmixed Higgs boson PDFs, one writes similarly to the fermions

f
0±
H

=
1

4
[(fH+ + fH0)± (fH� + f

H̄0)] , (2.27)

f
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1

4
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H̄0)] . (2.28)

In terms of these, the longitudinal W boson PDFs are
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, (2.29)
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In the notation of Ref. [8], the neutral Higgs fields are

H
0 =

(h� iZL)
p
2

, H̄
0 =

(h+ iZL)
p
2

, (2.31)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding PDFs are

fH0 =
1

2
[fh + fZL

+ i (fhZL
� fZLh

)] , (2.32)

f
H̄0 =

1

2
[fh + fZL
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)] , (2.33)

and one can also define the mixed PDFs

f
H0H̄0 =

1

2
[fh � fZL
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)] , (2.34)
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+ i (fhZL
+ fZLh

)] . (2.35)

Both of these mixed Higgs PDF carry non-zero hypercharge, such that they are not pro-

duced by DGLAP evolution in the unbroken gauge theory. However, they can be present

in the input at the electroweak scale q0, since the proton is an object in the broken theory.

They have isospin 1 and we can form the combinations with definite CP,

f
1±
HH

=
1

2
(f

H0H̄0 ± f
H̄0H0) . (2.36)

Then the longitudinal Z and Higgs PDFs are given by
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There are also the mixed hZL PDFs
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, (2.39)
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. (2.40)
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Amplitude-level PS

Forshaw, Holguin & Plätzer, 1905.08686 

A Splitting functions

The splitting operator Pij (see Figure 2), which is explicitly used in variant B of our

algorithm, is built from the spin dependent DGLAP splitting functions [39, 63]. It is an

operator in colour and helicity spaces and is defined using the spinor-helicity formalism [40].

We use the convention v(p,�) = CūT(p,�) where C = i�2�0, which defines our crossing

symmetry to have no global minus sign. Using rotational symmetry and parity invariance

one generally can write M({�i}) = M
⇤({��i}) where M is a matrix element and {�i} the

set of helicity states on which M depends. Together these define the correct treatment for

antiparticles, which should evolve as if they are particles with the opposite helicity. Thus
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(A.1)

Here sj is the spin/helicity of parton j and zi is the momentum fraction between parton i

and its parent parton, j (as in (2.9)). Tg
j are the basis-independent colour-charge operators

for the emission of a gluon [25, 64]. Tq
j is the colour charge operator for the emission of a

qq̄ pair from a gluon. In the colour flow basis it is

Tq
j =

p
TR �

p
TR

N
⌧j , (A.2)

where ⌧j exchanges the anti-colour lines associated with the colour line of parton j. For

example, let parton j have colour line c2 and anti-colour c̄5, ⌧j would exchange anti-colour

lines c̄2 and c̄5. A full definition of ⌧j , and other colour flow operators, can be found in [25],

where ⌧j is written s↵,� . Note Tq
j · T

q
j = TR .9 We have defined Ss as the operator that

9Strictly speaking this is only valid when acting on a physical matrix element.
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w`�1 . . . . . .

w`�2 . . . . . .

. . . . . . . . .

w2 . . . . . .

w1 . . . . . .

q1 X • . . . . . . •

q2 • . . . . . . •

q3 . . . . . .

. . . . . . . . .

q`�1 . . . • • . . .

q` . . . . . .

FIG. 8: Decomposition of the U+ gate for integers as large
as a, where ` = dlog2(a)e.

controlled on the particle state |pi being a type a fermion,
a type b fermion or a � boson. As illustrated in Fig. 9, the
first two cases require controlling on two qubits from |pi,
while the latter case requires controlling on all three the
qubits from |pi. These controls are applied to all of the
operations shown in Figure 8, yielding many instances
of an X-gate being controlled on multiple qubits. It is
a known result (see e.g. Ref. [33]) how to decompose a
C

(n)(U) operation, requiring n�1 work qubits, 2⇥(n�1)
To↵oli gates plus a C(U) operation. A To↵oli gate re-
quires 16 standard gates while a C(U) operation where
U is real requires 5 standard gates in general (although
if U = X it is simply a CNOT gate). For n > 2 and
controlling on all qubits being in the |1i state, we then
need

���C(n)[X]
��� = 32n� 31

���C(n)[U ]
��� = 32n� 27 (G1)

standard gates. To this count we add 2 X-gates for each
time we control on a qubit being in the |0i state instead
of the |1i state. Using these results, the total number
of standard gates necessary for the counting operation
when simulating the m

th step is:

909dlog2(m+ nI)e � 1010 . (G2)

The above number includes many pairs of adjacent X

gates (coming from controlling on a |0i, rather than |1i)
that cancel. Ignoring all such X gates gives

ccount(m,nI) = 873dlog2(m+ nI)e � 968 . (G3)

The true answer lies in between (G2) and (G3); the e↵ect
is small and henceforth we ignore the di↵erence arising
from controlling on |0i versus |1i. We therefore write the

final answer as

Nsub1(m,nI) = ccount(m,nI) . (G4)

• •

• •

|�i |ai |bi

FIG. 9: Controls for the particle states �, fa and fb. It is
possible to rearrange the particle representation given in

(A1) to use only 2 controls for all, but subsequent
operations become more complicated in this case.

2. The second sub-operation, U (m)
e

Let’s now look at the operation in which we deter-
mine whether or not we had an emission, whose circuit is
shown in Figure 4. If we are at the m

th step, the largest
number of particles we can have is m + nI , while the
minimum is nI . This means that we have to apply Ue

gates controlled on all the possible combinations of three
integers, ranging from 0 to m+ nI , whose sum is in the
range [nI ,m+ nI ]. There are

c(m,nI) =
m+ 1

6
(m2 + 3mnI + 5m+ 3n2

I + 9nI + 6)

(G5)

such such combinations. For each of these we run a
C

(3dlog2(m+nI)e(Ue) operation, where the Ue gates are
RY (✓) rotations. Using the results from above about
C

(n)(U) operations, the total number of standard gates
necessary for the emission operation is

Nsub2(m,nI) = c(m,nI) (96dlog2(m+ nI)e � 27) .
(G6)

3. The third sub-operation, Uh

The next operation we need to break down is the cre-
ation of the emission history shown in Figure 5. If we
are in the m

th step of the evolution, we can have up
to m + nI particles in |pi, so we must run m + nI of
the sub-operations depicted in Figure 6. We notice that
the second part of the circuit for the sub-operation is the
same as the counting operation, except we have U� gates
instead of U+ gates. The U� gate is implemented very
similarly to the U+ gate, the only di↵erence being that
we control on work qubits being in the |1i state instead

3

type of fermion can be treated using a density matrix for-
malism [19], where each splitting function is represented
through a splitting matrix as

Pi!j�(✓) |fii hfj | . (10)

In the limit of g12 ! 0 we have Pi!j�(✓) ! �i,jg
2
i P̂ (✓),

but for non-zero g12 the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.

In what follows, we construct a quantum algorithm
to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algorithm
is to encode the particles as qubits (Appendix A) and
first rotate to a particle basis where there is no mix-
ing between fermion states (Appendix B). In this su-
perposition basis, emissions between states are uncorre-
lated. Sudakov factors can then be used to govern the no
emission probability of the uncorrelated fermions. The
bulk of the quantum circuitry will then be dedicated to
book-keeping, to encode the emission history and decide
which fermions/bosons radiate/split at a given step in
the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm for one of N

steps. The circuit calls for six registers, which are are de-
tailed in Appendix A and summarized in Table I. The ini-
tial state consists of nI particles (which can be fermions
or bosons) in the f1/2 basis. One starts by rotating this
initial particle state from the f1/2 basis to the fa/b ba-
sis, using a simple unitary R operation discussed in Ap-
pendix B. Then, a series of operations evolving the par-
ticles states are applied: the number of particles of each
type are counted (Ucount), Sudakov factors are used to de-
termine if an emission occurred (Ue), given an emission, a
particular particle is chosen to radiate/branch (Uh), and

the resulting particle state is updated (U (m)
p ). Finally,

the state is rotated back to the f1/2 basis through the
R

† operation. This process is repeated for all of the N

steps. The rotation needs to be performed separately at
each step because in general the matrix R depends on ✓

through the running of the couplings. At each step, there
are four operations, which are summarized in Table II.
More details can be found in the appendices.

Performing the evolution in the fa/b basis and then
rotating to the f1/2 basis, creates interferences between
equivalent final states which had di↵erent intermediate
fermions. One event is generated by measuring all of
the qubits after the final rotation back to the f1/2 basis.
By repeating the entire process, we can generate a large
number of events which we can then use to compute phys-
ical observables for our theory. The number of standard
quantum gates (single qubit and CNOT gates) required
at each step is discussed in Appendix I and summarized
in Table II.

Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog2(N + nI)e
|ei Did emission happen? 1

|n�i Number of bosons dlog2(N + nI)e
|nai Number of fa dlog2(N + nI)e
|nbi Number of fb dlog2(N + nI)e

TABLE I: All of the registers in the quantum circuit with
the number of qubits they require for N steps and nI initial
particles. The symbol d. . .e denotes the ceiling function.

|pi / R
(m) p p U

(m)
p R

(m)†

|hi / Uh h

|ei U
(m)
e e

|n�i /

Ucount

n�

Uh|nai / na

|nbi / nb

FIG. 1: Quantum circuit block for one step, to be repeated
N times for the full circuit.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. In order
to show an implementation of our algorithm, we there-
fore consider a special case that is amenable to measure-
ment on existing technology. This special case ignores
the � ! ff̄ splitting (naturally suppressed in gauge the-
ories, but not in the scalar-only theory), ignores the run-
ning coupling, and has only a single fermion (possibly
in a superposition) as the initial state. This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix I). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires ngates = 12N + 2 (Appendix G).
This model is however still su�ciently complex that the
classical MCMC described earlier2 fails to capture im-
portant quantum e↵ects when g12 6= 0.
Figure 2 presents the normalized di↵erential cross sec-

tions of four examples from a class of observables,
P

i ✓
↵
i ,

for both classical simulations/calculations, quantum sim-
ulators [25], and chip experiments of public and Hub

2
While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix K. However, this algorithm only works when ne-

glecting the � ! ff̄ and cannot solve our full model.



Hadronisation
• Unexplained features: 

e.g. soft photon excess
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Figure 10: Dependence of the direct soft photon production on the jet core characteris-
tics. Upper panels: jet core net charge; bottom panels: jet core charged multiplicity. Left
panels: signal and predicted inner bremsstrahlung rates as a function of the jet core char-
acteristics. Right panels: ratios of the signal rates to those of the inner bremsstrahlung.
The straight lines in the left panels are linear fits produced to guide the eye: solid line
for the bremsstrahlung points and the dashed line for the signal. The inner vertical bars
represent the statistical errors, while the whole vertical bars give the statistical and sys-
tematic errors combined in quadrature. The horizontal lines in the right panels represent
the statistical averages over the signal-to-bremsstrahlung ratios. The cut pjet ≥ 20 GeV/c
is applied.
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Figure 5: Dependence of the direct soft photon production on the jet charged multi-
plicity. Left panel: signal and predicted inner bremsstrahlung rates as a function of the
jet charged multiplicity. Right panel: ratios of the signal rates to those of the inner
bremsstrahlung. The curves in the left panel are 2nd order polynomial fits produced to
guide the eye; the bremsstrahlung points were fitted first, and then the bremsstrahlung
curve was scaled by a factor of 4, which satisfactorily approximates the signal points. The
inner vertical bars represent the statistical errors, while the whole vertical bars give the
statistical and systematic errors combined in quadrature. The horizontal line in the right
panel represents the statistical average over the signal-to-bremsstrahlung ratios. The cut
pjet ≥ 20 GeV/c is applied.
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Resummation Issues

• SCET vs “traditional”: EW Sudakov 

• Coloured final states 

• Factorisation



Electroweak Sudakov
• SCET approach (Manohar & Waalewijn,1802.08687) 

• μ-anomalous dimension has ln ν terms and v.v. 

• Resum logs by double evolution: 

• Equivalent to angular evolution with ⍺W(pt) (Bauer & BW, 
1808.08831) - why?

µ

⌫

QMW

Q

MW

hard

soft

co
ll
in

ea
r

1

Figure 3. Path in (⌫, µ) space for integrating the anomalous dimensions of collinear and soft
operators.

H, collinear operators C and soft operators S at their natural scales8

µH ⇠ Q , µC ⇠ µS ⇠ M , ⌫C ⇠ Q , ⌫S ⇠ M , (6.1)

where they do not contain large logarithms. RG evolving them to a common scale (µ, ⌫)

will exponentiate the logarithms. The µ-anomalous dimension contains ln ⌫ terms, and the

⌫-anomalous dimension contains ln µ terms, which are related to each other and proportional

to the cusp anomalous dimension.

We will evolve the collinear and soft operators to the hard scale. This avoids having to

calculate (the evolution of) the process-dependent hard matching coe�cients at one loop. The

⌫-anomalous dimension contains ln µ2/M2
W

terms, so to avoid large logarithms the simplest

strategy is to first do the ⌫ evolution of the soft operator from ⌫ = MW to ⌫ = Q at µ = MW ,

and then perform the µ evolution of the soft and collinear operators from µ = MW to µ = Q,

as shown in fig. 3 (see also the discussion above eq. (4.30) in ref. [40]). Using eq. (4.7), the ⌫

evolution of the soft operator gives

U⌫ = exp

 Z
⌫C

⌫S

d⌫

⌫
�⌫,S

�
= exp


� nI

↵2(µ)

⇡
ln

Q

MW

ln
µ2

M2
W

�
, (6.2)

where nI is the number of gauge indices in the soft factor. When µ = MW exactly, U⌫ = 1

and can be ignored, but otherwise it must be kept to achieve NLL accuracy. In particular it

should be kept when estimating the perturbative uncertainty from scale variations. Note that

this analysis does not apply to the quintet contribution O(I=2)
W±

or the special case of O(I=1)

H̃H
,

which will be discussed in sec. 6.1.

Moving on to the µ-evolution, we first consider the terms in the collinear and soft µ-

evolution that give rise to double logarithms. They are described by the following multi-

plicative anomalous dimensions: For the soft anomalous dimension, the relevant terms in

8
We did not specify a rapidity scale for the hard coe�cient, because it does not contain rapidity divergences,

�⌫,S + �⌫,C = 0.
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Coloured Final States
• Resummation: 

• Soft function incorporates soft wide-angle ISR 
and FSR and interference 

• Parton Showers:  

• How well do different dipole initial scales (pi.pj) 
approximate this? 



Factorisation
• MPI/UE leads to violation for certain observables, 

e.g. ET = Σ|pT|, beam thrust, … 

• Does it make sense to use these as factorisation 
scales?



Conclusions?
• Both PS and R are (still) very active fields 

• Aiming for precision to make full use of LHC data 

• PS issues: recoils, correlations, NLO, … 

• R issues: SCET vs trad, coloured FS, multivariable, … 

• Plenty to be done (by you!)



Thanks



Backup



• Define  

• Then 

• Hence 

• For LLA resummation:  

q
@
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where

↵2 ! ↵2(q(1� z))

[CF = 3/4 for SU(2)]



Polarised Splitting Functions
• For any gauge interaction G=SU(3), SU(2), U(1) 

(neglecting azimuthal correlations)
interaction M , which we denoted collectively by I = G, one finds
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(z) = P

R

fRfR,G
(z) =
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1

2
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The factor of 1/2 in P
R

fV
has to be included since we are considering fermions with definite

chirality. For splitting to and from antifermions we have, from CP invariance,

P
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Finally for the Yukawa interaction (Y ), one has
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We now give the necessary coe�cients Cij,I for the five interactions.

I=3: SU(3) interaction

We start by considering the well known case of SU(3) interactions. The relevant degrees of

freedom are the gluon, as well as left and right-handed quarks. The coupling coe�cients

are

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA , (2.35)

where CF = 4/3, CA = 3, TR = 1/2. Note that since SU(3) has the same coupling to

left- and right-handed quarks, it does not produce a polarization asymmetry on its own,

unless an initial asymmetry is present due to polarized initial states. However, due to the
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