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This talk

In this 20-minute talk I will present:

• The algorithm in overview.

• A short discussion on handling the soft-collinear
region.

• Our observations on collinear factorisation within
our algorithm.

In [arXiv:1905.08686] you will also find:

• Alternative formations of the algorithm.

• Examples of analytic resummations calculated using
the algorithm.

• Discussions on the spin correlations and colour
structures in the algorithm.

• Full definitions of all operators involved, which are
often unwieldy.

This talk is based on Parton branching at amplitude level [arXiv:1905.08686]. 

https://arxiv.org/abs/1905.08686
https://arxiv.org/abs/1905.08686


The algorithm
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|ℳۦ is a conjugate amplitude.

𝐕𝑏,𝑎
† is an amplitude level Sudakov

factor (i.e. it has the complete colour
structure of exponentiated one loop
soft and collinear exchanges).

𝐃𝑖
† is an amplitude level operator that

emits a single parton, 𝑖.



The algorithm
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The algorithm (extra details)



The algorithm (extra details)

+⋯

These are the terms that
generate emissions from a
positive helicity electron.



Soft-collinear contributions

ℳۦ 𝐃1
†𝐃1 ۧℳ = ℳۦ 𝐒𝐨𝐟𝐭𝐂𝐨𝐥 ۧℳ + ℳۦ 𝐖𝐢𝐝𝐞𝐒𝐨𝐟𝐭 ۧℳ + ℳۦ 𝐇𝐚𝐫𝐝𝐂𝐨𝐥 ۧℳ + ℳۦ 𝐑𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫 ۧℳ

ℳۦ 𝐄𝐢𝐤𝐨𝐧𝐚𝐥 ۧℳ = ℳۦ 𝐒𝐨𝐟𝐭𝐂𝐨𝐥 ۧℳ + ℳۦ 𝐖𝐢𝐝𝐞𝐒𝐨𝐟𝐭 ۧℳ ,

ℳۦ 𝐒𝐩𝐥𝐢𝐭𝐭𝐢𝐧𝐠𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 ۧℳ = ℳۦ 𝐒𝐨𝐟𝐭𝐂𝐨𝐥 ۧℳ + ℳۦ 𝐇𝐚𝐫𝐝𝐂𝐨𝐥 ۧℳ ,

we ignore ℳۦ 𝐑𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫 ۧℳ as not it’s logarithmically enhanced.

So ℳۦ 𝐃1
†𝐃1 ۧℳ = ℳۦ 𝐄𝐢𝐤𝐨𝐧𝐚𝐥 ۧℳ + ℳۦ 𝐒𝐩𝐥𝐢𝐭𝐭𝐢𝐧𝐠𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 ۧℳ − ℳۦ 𝐒𝐨𝐟𝐭𝐂𝐨𝐥 ۧℳ

i.e. we can’t just interleave soft and collinear emissions, else we double count the soft-collinear
region.



Soft-collinear contributions

Hence two versions of the algorithm, A and B. In A the soft-collinear region is removed from C. In B it is
removed from S.

To make this subtraction we need to be able to accurately compute ℳۦ 𝐒𝐨𝐟𝐭𝐂𝐨𝐥 ۧℳ . This can be done
reasonably simply from the collinear side, just isolate the terms with soft poles.

1 + 𝑧2

1 − 𝑧
=

2

1 − 𝑧
− (1 + 𝑧)

Note that in the final state soft poles are also found at 𝑧 = 0. In the initial state the poles disappear as
they are screened by PDFs.



Soft-collinear contributions

Hence two versions of the algorithm, A and B. In A the soft-collinear region is removed from C. In B it is
removed from S.

We can also compute ℳۦ 𝐒𝐨𝐟𝐭𝐂𝐨𝐥 ۧℳ from analysing pole terms in the eikonal currents. Doing so
allows us to pull the wide angle soft contribution out from the Eikonal currents. However the process is
more lengthy, Matthew will discuss this more in his talk. The important take away is that both
approaches give the same result.



The algorithm (extra details), Variant A

Hard-collinear operator (what
remains after the subtraction,
i.e. −(1 + 𝑧) and other such
pieces).



Factorisation



Factorisation

The equality only holds when considering 
only the real part of these diagrams. The 
soft loop also generates imaginary parts; 
Coulomb/Glauber exchanges. 



Factorisation
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Factorisation

To interleave Coulomb terms we use a path 
ordered expansion around the “𝑖𝜋” terms. 
Following this we can carefully interleave them 
into a factorised evolution.



Factorisation

In a practical calculation, this means we can 
include Coulomb terms by using the factorised 
algorithm and terminating the evolution at the 
coulomb scale. After this you then perform a 
second evolution, using the output of the first as 
the hard process (initial condition). This second 
evolution runs from the first Coulomb scale and 
terminates on a second. Etc.
Finally we must integrate the Coulomb scales 
over the full ranged allowed by the ordering.



Factorisation



Conclusions

• We’ve explored the theoretical basis for an algorithm for parton 
evolution at amplitude level.

• This work will be used to inform future work on the CVolver code. 
Matthew will discuss this.

• Independent of CVolver, development of this algorithm has opened a 
number of future avenues for research: i.e.
• Rederiving current algorithms for parton showers to try and evaluate their 

accuracy.

• Re-formulating our algorithm as evolution equations might allow us to make a 
direct link to SCET.


