

COLOR EVOLUTION IN PARTON SHOWERS

ZOLTÁN NAGY DESY-HH

In collaboration with Dave Soper

Perturbative Cross Section

The main focus of this workshop is to calculate the pQCD cross sections as precise as possible, thus we have a pretty integral

$$\sigma[O_{J}] = \sum_{m} \frac{1}{m!} \sum_{\{a,b,f_{1},...,f_{m}\}} \int_{0}^{1} d\eta_{a} \int_{\eta_{a}}^{1} \frac{dz}{z} \Gamma_{aa'}^{-1}(z,\mu^{2}) f_{a'/A}(\eta_{a}/z,\mu^{2})$$

$$\times \int_{0}^{1} d\eta_{b} \int_{\eta_{b}}^{1} \frac{d\overline{z}}{\overline{z}} \Gamma_{bb'}^{-1}(\overline{z},\mu^{2}) f_{b'/A}(\eta_{b}/\overline{z},\mu^{2})$$

$$\times \int d\phi(\eta_{a}\eta_{b}s,\{p,f\}_{m}) \langle M(\{p,f\}_{m}) | O_{J}(\{p,f\}_{m}) | M(\{p,f\}_{m}) \rangle$$

$$= \frac{1}{m!} \sum_{\{a,b,f_{1},...,f_{m}\}} \int_{\eta_{a}}^{1} \frac{d\overline{z}}{\overline{z}} \Gamma_{bb'}^{-1}(\overline{z},\mu^{2}) f_{b'/A}(\eta_{b}/\overline{z},\mu^{2})$$

$$\times \int_{0}^{1} d\eta_{b} \int_{\eta_{b}}^{1} \frac{d\overline{z}}{\overline{z}} \Gamma_{bb'}^{-1}(\overline{z},\mu^{$$

Error of the factorization

(Cannot be beaten by calculating higher and higher order.)

and here the MSbar parton in parton renormalised PDF is

$$\Gamma_{aa'}(z,\mu^2) = \delta(1-z)\delta_{aa'} - \frac{\alpha_s(\mu^2)}{2\pi} \frac{1}{\epsilon} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} P_{aa'}(z) + \cdots .$$

Statistical Space

Introducing the statistical space we can represent the QCD density operator as a vector

Bare PDFs for both incoming hadrons

$$\sigma[O_J] = \underbrace{\left(1\middle| \mathcal{O}_J\left[\mathcal{F}(\mu^2)\circ\mathcal{Z}_F(\mu^2)\right]\middle|\rho(\mu^2)\right)}_{All\ the\ initial\ and\ final\ state\ sums\ and\ integrals} \middle|\mathcal{M}\rangle\langle M|$$

*QCD density operator*Describes the fully exclusive partonic final states.

Number of real radiations

The physical cross section is RG invariant as well as the QCD density operator and the bare PDF.

$$\mu^2 \frac{d}{d\mu^2} \left| \rho(\mu^2) \right) = \mu^2 \frac{d}{d\mu^2} \left[\mathcal{F}(\mu^2) \circ \mathcal{Z}_F(\mu^2) \right] = 0 + \mathcal{O}(\alpha_s^{k+1})$$

Perturbative expansion of the density operator

$$\left|\rho(\mu^2)\right) = \sum_{n=0}^k \left[\frac{\alpha_{\rm S}(\mu^2)}{2\pi}\right]^n \sum_{n_{\rm R}=0}^n \sum_{n_{\rm V}=0}^n \left|\rho^{(n_{\rm R},n_{\rm V})}(\mu^2)\right) \\ \frac{n_{\rm R}+n_{\rm V}=n}{n_{\rm R}+n_{\rm V}=n}$$
 Number of loops

pQCD Cross Sections

ZN, D. Soper, **Phys.Rev. D98** (2018) no.1, 014034

Subtractions

Singularities cancel each other here

$$\sigma[O_J] = \overbrace{\left(1 \middle| \left[\mathcal{F}(\mu^2) \circ \mathcal{Z}_F(\mu^2)\right] \mathcal{D}(\mu^2)}^{} \mathcal{D}^{-1}(\mu^2) \mathcal{O}_J \middle| \rho(\mu^2)\right)}^{}$$

$$\mathcal{D}^{-1}(\mu^2) \mathcal{O}_J \left| \rho(\mu^2) \right)$$

$$= |\rho_{\mathrm{H}}(\mu^2))$$

Hard part, finite in d=4 dimension

Hopefully n << 2k+1

$$+ \mathcal{O}(\alpha_{\rm s}^{k+1} L^{2k+2})$$

$$+ \mathcal{O}(\Lambda_{QCD}^2/\mu_J^2)$$

By solving the corresponding renormalization group equation

Unitary shower

$$\sigma[O_J] = \left(1\middle|\mathcal{O}_J\ \widetilde{\mathcal{U}(\mu_{\mathrm{f}}^2,\mu^2)}\ \underbrace{\mathcal{U}_{\mathcal{V}}(\mu_{\mathrm{f}}^2,\mu^2)}\ \mathcal{F}(\mu^2)\ \middle|\rho_{\mathrm{H}}(\mu^2)\right) + \mathcal{O}(\alpha_{\mathrm{s}}^{k+1}\underline{L^n}) + \mathcal{O}(\mu_{\mathrm{f}}^2/\mu_J^2)$$

Resummation of threshold effects

Unitary Shower Operator

Here we focus on the the unitary shower

$$\mathcal{U}(\mu_{\rm f}^2, \mu_{\rm H}^2) = \mathbb{T} \exp \left(\int_{\mu_{\rm f}^2}^{\mu_{\rm H}^2} \frac{d\mu^2}{\mu^2} \, \frac{\alpha_{\rm s}(\mu^2)}{2\pi} \, \left[\mathcal{S}^{(1)}(\mu^2) + \frac{\alpha_{\rm s}(\mu^2)}{2\pi} \mathcal{S}^{(2)}(\mu^2) + \cdots \right] \right)$$

Here we are interested only at first order level:

Real emissions

Imaginary part of the 1-loop contributions

$$\frac{\alpha_{\rm s}(\mu^2)}{2\pi}\mathcal{S}^{(1)}(\mu^2) = \mathcal{H}(\mu^2) - \mathcal{V}_{\rm Re}(\mu^2) - \mathbf{i}\pi\mathcal{V}_{\rm i}\pi(\mu^2)$$

Inclusive splitting operator

Unitary condition tells us:

$$(1|\mathcal{S}^{(1)}(\mu^2)) = (1|[\mathcal{H}(\mu^2) - \mathcal{V}_{Re}(\mu^2)]) = (1|\mathcal{V}_{i\pi}(\mu^2)) = 0$$

Evolution Equation

The shower operator obeys the following integral equation:

$$\mathcal{U}(\mu_2^2, \mu_1^2) = \mathcal{N}(\mu_2^2, \mu_1^2) + \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \, \mathcal{U}(\mu_2^2, \mu^2) \mathcal{H}(\mu^2) \mathcal{N}(\mu^2, \mu_1^2)$$

where the no-splitting (Sudakov) operator is

$$\mathcal{N}(\mu_2^2, \mu_1^2) = \mathbb{T} \exp \left\{ -\int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \left[\mathcal{V}_{\text{Re}}(\mu^2) + i\pi \mathcal{V}_{i\pi}(\mu^2) \right] \right\}$$

This is not a diagonal operator and it is impossible to diagonalise when we have $\sim O(10)$ partons.

Let's define a systematic approximation!

LC+ Approximation

ZN, D. Soper, **JHEP06** (2012) 044

The **real splittings** are described by

$$\mathcal{H}(\mu^2) | \{p, f, c', c\}_m \}$$

$$\propto \sum_{l,k} H_{lk}(\mu^2) | \{p, f\}_m \rangle \left\{ t_l^{\dagger} | \{c\}_m \rangle \langle \{c'\}_m | t_k + t_k^{\dagger} | \{c\}_m \rangle \langle \{c'\}_m | t_l \right\}$$

The index *l* always represents the emitter parton and the emitted parton can be collinear only with *l*.

The inclusive splitting operator is

$$\mathcal{V}_{\mathrm{Re}}(\mu^{2})\big|\{p,f,c',c\}_{m}\big)$$

$$\propto \sum_{l,k} V_{lk}(\mu^{2})\big|\{p,f\}_{m}\big)\,\Big\{\big|\{c\}_{m}\big\rangle\big\langle\{c'\}_{m}\big|[t_{k}\cdot t_{l}^{\dagger}]+[t_{l}\cdot t_{k}^{\dagger}]\big|\{c\}_{m}\big\rangle\big\langle\{c'\}_{m}\big|\Big\}$$

We need an approximation (only in the color space) that

- can handle color interference contributions
- is as minimal approximation as possible
- is exact in the collinear and soft-collinear regions
- makes some harm only in the wide angle soft region
- preserves unitary

LC+ Approximation

We insert a projection only on the spectator side

$$t_k^{\dagger} | \{c\}_m \rangle \longrightarrow C(l, m+1) t_k^{\dagger} | \{c\}_m \rangle$$
$$\langle \{c'\}_m | t_k \longrightarrow \langle \{c'\}_m | t_k C(l, m+1)^{\dagger}$$

The **operator** C(l, m+1) is defined by it action on the basis states:

$$\frac{C(l,m+1)\big|\{\hat{c}\}_{m+1}\big\rangle = \begin{cases} \big|\{\hat{c}\}_{m+1}\big\rangle & \text{if } l \text{ and } m+1 \text{ are color connected in } \{\hat{c}\}_{m+1} \\ 0 & \text{otherwise} \end{cases}$$

(In string basis l and m+1 are color connected when they are next to each other along the fermion line.)

In the inclusive splitting operator, the color simplifies a lot:

$$\begin{aligned} &[t_l \cdot t_k^{\dagger}] \big| \{c\}_m \big\rangle \longrightarrow [t_l \cdot C(l, m+1) t_k^{\dagger}] \big| \{c\}_m \big\rangle = \big| \{c\}_m \big\rangle \frac{t_l^2}{1 + \delta_{\mathsf{g} f_l}} \\ &\langle \{c'\}_m \big| [t_k \cdot t_l^{\dagger}] \longrightarrow \big\langle \{c'\}_m \big| [t_k C(l, m+1)^{\dagger} \cdot t_l^{\dagger}] = \frac{t_l^2}{1 + \delta_{\mathsf{g} f_l}} \big\langle \{c'\}_m \big| \end{aligned}$$

LC+ Approximation

In LC+ approximation every basis state is eigenstate of the inclusive splitting operator

$$\mathcal{V}^{\text{LC+}}(\mu^2) | \{p, f, c', c\}_m = \lambda(\{p, f, c', c\}_m, \mu^2) | \{p, f, c', c\}_m \}$$

and we have **Sudakov factor** instead of Sudakov operator

$$\mathcal{N}^{\text{LC+}}(\mu_2^2, \mu_1^2) \big| \{ p, f, c', c \}_m \big) = \exp \left\{ - \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \lambda(\{p, f, c', c\}_m, \mu^2) \right\} \big| \{ p, f, c', c \}_m \big)$$

Based on this we can define the **LC+ parton shower** and its evolution equation is

$$\mathcal{U}^{\text{LC+}}(\mu_2^2, \mu_1^2) = \mathcal{N}^{\text{LC+}}(\mu_2^2, \mu_1^2) + \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \mathcal{U}^{\text{LC+}}(\mu_2^2, \mu^2) \mathcal{H}^{\text{LC+}}(\mu^2) \mathcal{N}^{\text{LC+}}(\mu^2, \mu_1^2)$$

Beyond LC+

ZN, D. Soper, **Phys.Rev. D99** (2019) no.5, 054009

Now we can define the operators of the soft wide angle emissions

$$\mathcal{H}(\mu^2) = \mathcal{H}^{\text{LC+}}(\mu^2) + \Delta \mathcal{H}(\mu^2)$$
$$\mathcal{V}(\mu^2) = \mathcal{V}_{\text{Re}}(\mu^2) + i\pi \mathcal{V}_{i\pi}(\mu^2) = \mathcal{V}^{\text{LC+}}(\mu^2) + \Delta \mathcal{V}(\mu^2)$$

With these the full shower is

$$\mathcal{U}(\mu_2^2, \mu_1^2) = \mathcal{U}^{\text{LC+}}(\mu_2^2, \mu_1^2) + \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \, \mathcal{U}(\mu_2^2, \mu^2) \left[\Delta \mathcal{H}(\mu^2) - \Delta \mathcal{V}(\mu^2) \right] \mathcal{U}^{\text{LC+}}(\mu^2, \mu_1^2)$$

One can expand this in terms of the soft wide angle operators at a given order. In principle this is what we want, but this form is not efficient for implementation.

Let's try something else:

$$\mathcal{N}(\mu_2^2, \mu_1^2) = \underbrace{\mathcal{X}(\mu_2^2, \mu_1^2)}_{\mathcal{N}^{\text{LC+}}} \mathcal{N}^{\text{LC+}}(\mu_2^2, \mu_1^2)$$

Hopefully it is **simple enough** to deal with it perturbatively.

Beyond LC+

The evolution equation is

$$\mathcal{U}(\mu_2^2, \mu_1^2) = \mathcal{X}(\mu_2^2, \mu_1^2) \mathcal{N}^{\text{LC+}}(\mu_2^2, \mu_1^2) + \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \mathcal{U}(\mu_2^2, \mu^2) \left[\mathcal{H}^{\text{LC+}}(\mu^2) + \Delta \mathcal{H}(\mu^2) \right] \mathcal{X}(\mu^2, \mu_1^2) \mathcal{N}^{\text{LC+}}(\mu^2, \mu_1^2)$$

When we iterate this equation we can **control the number of** ΔH operator **insertions**.

The *X* operator obeys its evolution equation:

$$\mathcal{X}(\mu_2^2, \mu_1^2) = 1 - \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \, \mathcal{X}(\mu_2^2, \mu^2) \, \mathcal{N}^{\text{LC+}}(\mu_2^2, \mu^2) \frac{\Delta \mathcal{V}(\mu^2)}{\Delta \mathcal{V}(\mu^2)} \, \mathcal{N}^{\text{LC+}}(\mu_2^2, \mu^2)^{-1}$$

It is not immediately obvious but this operator depends only pure soft contributions

$$\mathcal{X}(\mu_2^2, \mu_1^2) = 1 - \int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \, \mathcal{X}(\mu_2^2, \mu^2) \, \mathcal{N}_{\text{soft}}^{\text{\tiny LC+}}(\mu_2^2, \mu^2) \Delta \mathcal{V}(\mu^2) \, \mathcal{N}_{\text{soft}}^{\text{\tiny LC+}}(\mu_2^2, \mu^2)^{-1}$$

and the Sudakov factor is

$$\mathcal{N}_{\text{soft}}^{\text{LC+}}(\mu_2^2, \mu_1^2) | \{p, f, c', c\}_m) = \exp \left\{ -\int_{\mu_2^2}^{\mu_1^2} \frac{d\mu^2}{\mu^2} \underbrace{\lambda_{\text{soft}}(\{p, f, c', c\}_m, \mu^2)} \right\} | \{p, f, c', c\}_m)$$

It is rather **simple** and can be computed "**quasi-analytically**".

Beyond LC+

Expanding the shower operator in terms of ΔH and ΔV operators, we can write

$$\mathcal{U}(\mu_{2}^{2}, \mu_{1}^{2}) = \mathcal{U}^{\text{LC+}}(\mu_{2}^{2}, \mu_{1}^{2}) + \underbrace{\mathcal{U}^{(1)}(\mu_{2}^{2}, \mu_{1}^{2})}_{\sim \mathcal{O}([\Delta \mathcal{H}(\mu^{2}) - \Delta \mathcal{V}(\mu^{2})])} + \underbrace{\mathcal{U}^{(2)}(\mu_{2}^{2}, \mu_{1}^{2})}_{\sim \mathcal{O}([\Delta \mathcal{H}(\mu^{2}) - \Delta \mathcal{V}(\mu^{2})])} + \dots$$

This expansion is systematic and the unitary condition is satisfied term by term,

$$(1|\mathcal{U}^{\text{LC+}}(\mu_2^2, \mu_1^2) = (1|$$

and for the corrections

$$(1|\mathcal{U}^{(k)}(\mu_2^2, \mu_1^2) = 0$$
 for $k = 1, 2, 3, \dots$

We can test this numerically!

Unitary Test

Rapidity Gap Survival

ZN, D. Soper, arXiv:1905.07176

Rapidity Gap Survival

Summary

- **DEDUCTOR** is designed to do a better job with color, spin and summation of large logarithms compared.
 - Lambda, kT and angular ordering
 - LC+ color treatment. It allows us to do color evolution at amplitude level.
 - Wide angle soft gluon effects perturbatively.
 - Threshold log summation
 - Spin correlations are not yet computed
- Next version is available soon
 - Fully exponentiated Glauber (Coulomb) gluon effects
- It is available from

```
http://www.desy.de/~znagy/deductor
http://pages.uoregon.edu/soper/deductor
```