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Perturbative Cross Section

The main focus of this workshop is to calculate the pQCD cross sections as precise as possible, thus

we have a pretty integral Bare PDE
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Error of the factorization
(Cannot be beaten by calculating higher and higher order.)

and here the MSbar parton in parton renormalised PDF is
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Statistical Space

Introducing the statistical space we can represent the QCD density operator as a vector

Bare PDFs for both incoming hadrons
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state sums and integrals
QCD density operator
Describes the fully exclusive

L . , partonic final states.
The physical cross section is RG invariant as well as the

QCD density operator and the bare PDF.
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PQCD Cross Sections

ZN, D. Soper, Phys.Rev. D98 (2018) no.1, 014034

Subtractions

Singularities cancel each other here /
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Unitary Shower Operator

Here we focus on the the unitary shower
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Here we are interested only at first order level:

Imaginary part of the

Real emissions 1-loop contributions
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Inclusive splitting operator

Unitary condition tells us:
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Evolution Equation

The shower operator obeys the following integral equation:
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where the no-splitting (Sudakov) operator is
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This is not a diagonal operator
and it is impossible to diagonalise
when we have ~0O(10) partons.

Let’s define a systematic approximation!



LC+ Approximation

ZN, D. Soper, JHEP06 (2012) 044

The real splittings are described by
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The index [ always represents the emitter parton and the emitted parton can be collinear only with [.

The inclusive splitting operator is
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We need an approximation (only in the color space) that
" can handle color interference contributions
> is as minimal approximation as possible
" is exact in the collinear and soft-collinear regions
> makes some harm only in the wide angle soft region
> Hreserves unitary



LC+ Approximation

We insert a projection only on the spectator side
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The operator C(I, m+1)is defined by it action on the basis states:
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(In string basis | and m+1 are color connected when they are next to each other along the fermion line.)

In the inclusive splitting operator, the color simplifies a lot:
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LC+ Approximation

In LC+ approximation every basis state is eigenstate of the inclusive splitting operator
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and we have Sudakov factor instead of Sudakov operator
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Based on this we can define the LC+ parton shower and its evolution equation is
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Beyond LC+

ZN, D. Soper, Phys.Rev. D99 (2019) no.5, 054009

Now we can define the operators of the soft wide angle emissions

With these the full shower is
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One can expand this in terms of the soft wide angle operators at a given order. In principle this
IS what we want, but this form is not efficient for implementation.
Let’s try something else:

N (13, 13) = X (5, 7)) NF (3, 17)
N ——

Hopefully it is simple enough to
deal with it perturbatively.



Beyond LC+

The evolution equation is

»
U(ps, ut) = X (3, p) N (13, 13) +/ M—A; (3, 1) [HF (1) + AH ()] X (17, p )N (0, 13)
w3

When we iterate this equation we can control the number of AH operator insertions.

The X operator obeys its evolution equation:
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It is not immediately obvious but this operator depends only pure soft contributions
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and the Sudakov factor is

Md2

sLon;r :u27:u1 Hpvfac C}m) exp{ / %Asoft({pafac C}m:,u }Hpafac C}m)
pa

It is rather simple and can be
computed “quasi-analytically’.



Beyond LC+

Expanding the shower operator in terms of AH and AV operators, we can write
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This expansion is systematic and the unitary condition is satisfied term by term,
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and for the corrections

(U™ (u3,p43) =0  for k=1,2,3,...

We can test this numerically!



LC+ contribution

Unitary Test

A + B =1 contributions

A + B = 2 contributions

—— AH — AV, — Total — AH2 — AHAVR.

o(showered) /o (Born)

—_— AVPZ{G —— Total

10% - o(showered) /o (Born)
10% - o(showered) /o (Born)

A + B = 3 contributions

A+ B+ C = 2 contributions

A+ B + C = 3 contributions

— AH? — AH2AVR, — AHAVZE,
— Avge — Total

— AH2 — AHAVR. — AVI?{Q
—— Total

103 - o(showered) /o (Born)

I I
— AH3 — AH?AVg. — AHAVE,
— AV} --- AHVE
— Total

o AVRVE

102 - o(showered) /o (Born)
102 - o(showered) /o (Born)
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Rapidity Gap Survival

ZN, D. Soper, arXiv:1905.07176
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DEDUCTOR is designed to do a better job with color, spin and summation of large logarithms compared.

Summary

Lambda, KT and angular ordering

LC+ color treatment. It allows us to do color evolution at amplitude level.
Wide angle soft gluon effects perturbatively.

Threshold log summation

Spin correlations are not yet computed

Next version is available soon

Fully exponentiated Glauber (Coulomb) gluon effects

It is available from

http://www.desy.de/~znagy/deductor
http://pages.uoregon.edu/soper/deductor
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