Multiplet bases - why and why not?

Stefan Keppeler

Department of Mathematics, University of Tübingen
PSR 19 Vienna

I drihl, and I know, hrings

- QCD process

- QCD process

- colour structure: invariant tensor
- QCD process

- colour structure: invariant tensor
- total amplitude as linear combination of colour structures requires basis of invariant tensors
- QCD process

- colour structure: invariant tensor
- total amplitude as linear combination of colour structures requires basis of invariant tensors
- construct a multiplet basis

Constructing multiplet bases

Constructing multiplet bases

- project to irreps on both sides

Constructing multiplet bases

- project to irreps on both sides
- Schur's Lemma: colour structure maps only irreps to equivalent irreps
- construct transition operators

Constructing multiplet bases

- project to irreps on both sides
- Schur's Lemma: colour structure maps only irreps to equivalent irreps
- construct transition operators

Most work goes into first step: constructing projectors.

Multiplet bases are. . .

- orthogonal \& minimal.

Multiplet bases are. . .

- orthogonal \& minimal.
... as opposed to trace or colour flow bases which are
- non-orthogonal \& overcomplete.

Illustration: soft anomalous dimension matrix for $g g \rightarrow g g^{1}$

$$
\begin{aligned}
& 9 \times 9 \\
& \text { trace basis } \\
& 8 \times 8 \\
& \text { multiplet basis }
\end{aligned}
$$

${ }^{1}$ N. Kidonakis, G. Oderda \& G. Sterman, Nucl. Phys. B531 (1998) 365-402, hep-ph/9803241.

Illustration: soft anomalous dimension matrix for $g g \rightarrow g g^{1}$

$$
\begin{aligned}
& 9 \times 9 \\
& \text { trace basis } \\
& 8 \times 8 \\
& \text { multiplet basis }
\end{aligned}
$$

\ldots for $g g g \rightarrow g g g$ (or $g g g g \rightarrow g g g g$) we'd have
265×265
$(14833 \times 14833$

$$
\begin{gathered}
145 \times 145 \\
3598 \times 3598)
\end{gathered}
$$

constructing multiplet bases

- gluons only

SK \& M. Sjödahl, JHEP 09 (2012) 124, arXiv:1207. 0609

- quarks, anti-quarks \& gluons

SK \& M. Sjödahl, JHEP 09 (2012) 124, arXiv: 1207.0609
M. Sjödahl \& J. Thorén, JHEP 11 (2018) 198, arXiv:1809. 05002

- quarks (or anti-quarks) only \sim Hermitian Young operators

SK \& M. Sjödahl, J. Math. Phys. 55 (2014) 021702, arXiv: 1307.6147
J. Alcock-Zeilinger \& H. Weigert, J. Math. Phys. 58 (2017) 051702, arXiv:1610. 10088
J. Alcock-Zeilinger \& H. Weigert, J. Math. Phys. 58 (2017) 051703, arXiv:1610.08802

- quarks and anti-quarks, singlets only
J. Alcock-Zeilinger \& H. Weigert, arXiv: 1812.11223
working with multiplet bases
- expanding into multiplet bases \sim Wigner 3 j \& 6 j coefficients M. Sjödahl \& J. Thorén, JHEP 09 (2015) 055, arXiv:1507.03814
- download bases for up to 7 external partons SK \& M. Sjödahl, JHEP 09 (2012) 124, arXiv: 1207.0609
M. Sjödahl \& J. Thorén, JHEP 09 (2015) 055, arXiv:1507. 03814
- download 6 j coefficients
[M. Sjödahl \& J. Thorén, JHEP 09 (2015) 055, arXiv:1507.03814]
M. Sjödahl \& J. Thorén, JHEP 11 (2018) 198, arXiv:1809. 05002
- software
M. Sjödahl: ColorMath/ColorFull (Mathematica/C++ packages)

Resources

gluons only

- first occurrence n_{f}
$M^{\prime} \subset M \otimes A \quad \Rightarrow \quad\left|n_{f}(M)-n_{f}\left(M^{\prime}\right)\right| \leq 1$
- rules for different cases

SK \& M. Sjödahl, JHEP 09 (2012) 124, arXiv:1207. 0609

quarks, anti-quarks \& gluons - two strategies

- based on gluon projectors

SK \& M. Sjödahl, JHEP 09 (2012) 124, arXiv:1207. 0609

- recursive construction, arbitrary parton order

M. Sjödahl \& J. Thorén, JHEP 11 (2018) 198, arXiv:1809. 05002

quarks only (or anti-quarks only)

- (conventional) Young operators are not Hermitian \sim do not yield orthogonal bases

$$
Y_{\frac{12}{3}}=\frac{4}{3}-5 x-\quad Y_{\left[\frac{13}{2}\right.}=\frac{4}{3} x \sqrt{x}
$$

- Hermitian Young operators

$$
P_{\frac{1}{12}}^{3}=\frac{4}{3}, \quad P_{\frac{1}{2} 3}=
$$

SK \& M. Sjödahl, J. Math. Phys. 55 (2014) 021702, arXiv: 1307.6147
J. Alcock-Zeilinger \& H. Weigert, J. Math. Phys. 58 (2017) 051702, arXiv:1610. 10088
J. Alcock-Zeilinger \& H. Weigert, J. Math. Phys. 58 (2017) 051703, arXiv:1610. 08802

quarks \& anti-quarks, singlets only - bending lines

J. Alcock-Zeilinger \& H. Weigert, arXiv:1812.11223

quarks \& anti-quarks - non-singlets

- apply two Hermitian Young operators

- further decompose by subtracting contractions, e.g.

work in progress (with J. Alcock-Zeilinger)
expanding into multiplet bases $-3 \mathbf{j} \& 6 \mathbf{j}$ coefficients

calculate $6 \mathbf{j}$ coefficients using multiplet bases

M. Sjödahl \& J. Thorén, JHEP 09 (2015) 055, arXiv:1507. 03814

