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Interference effects are difficult to model in parton 
shower simulations

1/NC effects in dipole 
showers

γ/Z interference in EW 
showers

CKM interference in 
EW showers

Parton showers are based on probabilistic MC approaches

Quantum interference effects not easily included in formalism

Several interference effects can appear
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Consider a simpler toy model that exhibits interference 
effects similar to the CKM case

Yukawa theory with two types of fermions and mixing between them

L =f̄1(i/@ +m1)f1 + f̄2(i/@ +m2)f2 + (@µ�)
2

+ g1f̄1f1�+ g2f̄2f2�+ g12
⇥
f̄1f2 + f̄2f1

⇤
�
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Many similarities with the CKM interference

Very simple Feynman rules

g1 g2 g12 g12
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The mixing g12 gives several interesting effects

Different real emission amplitudes
give rise to interference

Virtual diagrams give rise to
flavor change without radiation

Need to correct both real and virtual effects
Similar to including subleading color
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In the high energy limit where masses can be ignored, can 
diagonalize this problem

(f̄1, f̄2)

✓
g1 g12
g12 g2

◆✓
f1
f2

◆
�
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Interaction can be written in matrix notation

This can be diagonalized as

7

Appendix A: The registers of the quantum circuit

The quantum circuit introduced in this paper has a
total of 6 registers. The first two registers are physical
registers, holding the information created by the circuit.
The final 4 registers are work registers, which means that
they are reset to their original value after each step. Thus
they hold no information after the circuit has been run,
and the same work registers can be used for each step.
As discussed in other appendices, additional work qubits
will be necessary when actually implementing some of
the more involved circuit operations.

The first register, |pi, contains the flavor information
about each particle. Each particle in the system can be
in one of 6 states |0i, |�i,

��fa/b
↵
, and

��f̄a/b
↵
. To encode

these 6 states one requires 3 qubits, and we choose the
representation as
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f̄2/f̄b

1

CCCCCCCCCCCCA

, (A1)

where the third and fourth states are not used and one
chooses f1/2 and fa/b before and after the basis change
discussed in Appendix B, respectively. Since there can
be up to N + nI particles in the system (where nI is the
initial number of particles and N is the number of steps),
one needs a total of

dim[|pi] = 3(N + nI) (A2)

qubits to encode this register.
The second register, |hi, holds the information about

which particle emitted a particle at a given step. At the
start of the m

th step (where the first step has m = 0),
there are up to m + nI particles that can have emitted
the extra particle, and at the m

th step |him needs to be
able to hold the integers 0 . . .m+nI (where 0 denotes no
particle having emitted something). When considering

N steps, the register therefore needs to hold
PN�1

m=0(m+
nI) = N(N + 2nI + 1)/2 integers, requiring

dim[|hi] = dlog2[N(N + 2nI + 1)/2]e , (A3)

, where d. . .e denotes the ceiling function. It might be
simpler to have each |him be of the same size, in which
case each |him would need to hold the integers 0 . . . N +
nI � 1. This would require

dim[|hi] = Ndlog2[(N + nI)]e (A4)

qubits.
The third register, |ei temporarily holds the informa-

tion whether an emission has occurred in the current step.

This is binary information, and therefore requires a single
qubit, giving

dim[|ei] = 1 . (A5)

The remaining three registers are count registers,
which temporarily hold the information about how many
bosons, fermions of type a and fermions of type b (count-
ing both f and f̄) are in the current state. Since the
count registers are used for every step, they have to hold
the integers 0, . . . , N + nI . We again choose the binary
representation to hold these integers, and one needs

dim[|n�i] = dim[
��na/b

↵
] = dlog2[(N + nI)]e (A6)

qubits.
The summary of these registers was already shown in

Table I.
At the start of the circuit, all work registers |ei, |n�i,

|nai, and |nbi are initialized to |0i, where for the count
registers |0i refers to the integer 0 in binary notation.
For the physical registers, all history registers |him as
well as the particle registers |pim>nI

are initialized to
zero. The only non-zero registers are |pimnI

, which are
initialized to the initial particle content (possibly in a
superposition).

Appendix B: Diagonalizing the splitting matrix

In this appendix we discuss the rotation required to
go from the basis with fermions f1/2 to a new basis with
fa/b. The splitting matrix in Eq. (10) can be written in
terms of the coupling constants g1, g2 and g12 as

Pi!j�(✓) = Gij P̂ (✓) ⌘
 

g1 g12

g12 g2

!
P̂ (✓) . (B1)

The coupling matrix G can be diagonalized as

G
diag = UGU

† =

 
ga 0

0 gb

!
, (B2)

with

ga =
g1 + g2 � g

0

2
, gb =

g1 + g2 + g
0

2
, (B3)

where

g
0 = sign(g2 � g1)

q
(g1 � g2)2 + 4g212 . (B4)

The matrix U in Eq. (B2) is given by

U =

 p
1� u2 u

�u
p
1� u2

!
, (B5)

with

u =

s
(g1 � g2 + g0)

2g0
. (B6)
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Thus, the theory can be transformed into a system of non-interacting fermions

(f̄1, f̄2)U
†
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◆
� ⌘ (f̄a, f̄b)
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0 gb
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◆
�
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This allows to compute splitting amplitudes using insight 
from parton showers

Parton showers are defined from splitting function and Sudakov factors and 
depend on an evolution variable

Discretize evolution variable and define (no-) emission probabilities (P) Δ

×
×

×

× ×

× ×
×

●

● ●

I

a

b
c

Δ2 Δ5PIΔ1 PaΔ3 PbΔ4

×

Emission depends on P of particle that emits and Δ of system at time ti
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However, computing the final result is exponentially hard in 
the number of final state particles

×

×

×

× ×

×
×
×

●

● ●

I

a

b

c

Δ2 Δ5PIΔ2 PaΔ3 PbΔ4

×

• Δi only depends on na, nb,  
but different for each i  

• Pα depends on flavor of each particle,  
but independent of i

This means that for each shower history, need amplitudes for all possible 
flavors of fermions

There are two important facts to realize:

This grows like 2N for N fermions

1. We need to rotate back to the f1, f2 basis in the end, so need to 
compute amplitudes, not probabilities

2. Need the results for all possible final state particles fa, fb
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Since most of you have not thought about quantum 
computing, here is a very short primer

Every state is represented by quits. Examples are

fa = |0⟩ , fb = |1⟩ , |5⟩ = |101⟩ , true = |0⟩ , false = |1⟩

We operate on these states with unitary operations (matrices)

U
<latexit sha1_base64="TmU/DqUWarUyx8hwXKkk/PJYunc="></latexit>

U
<latexit sha1_base64="i43LZxeJLTWqqn/LEhEJavYh2PE="></latexit>

2x2 matrix U
on single qbit

4x4 matrix U
on pair of qbits

Can perform controlled operations

U
<latexit sha1_base64="JRusV3TkVpJFRXK9o9i30g6IFGA="></latexit>

= U ⌦ |0i h0|
<latexit sha1_base64="1ozER/XC4/Z2o+Q77tCeVWG6Qb0="></latexit>

= U ⌦ |1i h1|
<latexit sha1_base64="fyGWTJGhgyhUQ4KQ8cC924gNXAE="></latexit>

•
U

<latexit sha1_base64="eS2kCgvqGVAMBTCF8h9NmLAmU1o="></latexit>

All Unitary operations can be built out of a very small set of basic operations
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Since most of you have not thought about quantum 
computing, here is a very short primer

On a quantum computer, can perform many calculations at once
•

•
•

U U2 U4
<latexit sha1_base64="0dsmPnvWZs4BkDjHfr4FQSF7c5c="></latexit>

|ii |qi ! |iiU j |qi
<latexit sha1_base64="xCQe0pQ5y0ckRWu9/q824FqXdJg="></latexit>

It performs operation

If start with superposition of all integers, perform 8 calculation with only 3 gates
X

i

↵i |ii |qi !
X

i

↵i |iiU j |qi
<latexit sha1_base64="ILBr8hc0cZmWl7QSLAfkGPGA+8E=">AAAEAXicdVJLb9QwEHa7PMryaAtHLharlTiUdtNS4FKptOVxLFK3rbRZVo4zSUxsJ2s7RVWUE/+EGwckxJWfwQkJ/guT7FK2LVhKPJ7n981MkEthXa/3Y26+deXqtesLN9o3b92+s7i0fPfQZoXh0OeZzMxxwCxIoaHvhJNwnBtgKpBwFKS7tf3oBIwVmT5wpzkMFYu1iARnDlWjpVe+LdRIUJ/JPGG1kIIrRTW5x3i7jP7Pp//23R+/0VKnt9prDr0seFOhQ6Znf7Q8/9EPM14o0I5LZu3A6+VuWDLjBJdQtf3CQs54ymIYoKiZAjssG8YV7aImpFFm8NOONtrZiJIpa09VgJ6KucRetNXKf9kGhYueDUuh88KB5pNCUSEpdqFuHw2FAe7kKQqMG4FYKU+YYdxhk9vt7kEC1CVCx5ZqgHAKclww7QpFmYwzDEqUbXfPIZIxz1SOMwlq6l3/uduBWOgX+kSYTNc9Ks9iq9LXmdAhKv3EFBIiIaWfM4PqAGef+ic2FfmjzdxViMjfA+yvgV2W1yN/mRlk/TebxXQTfw8DzifseJ31zsbU/GTWWmPkk4QWXJEPzvINS4vsZbOQPAGebmVRtBI1VbdmqmICfBnQ8B6pK6bD0j8zC17rkGA18Ialn9QANkCtrdHSF452vAqZzY4tMAz3cGWM5cdcGF6IhvsegtVAbaZgsiM47LDRNa8yZCZFDKCr0sRBVeLCruDWbta/HibArfYu7vBl4XB91dtYXX/zuLO9M93vBXKfPCAPiUeekm3ymuyTPuHkM/lOfpJfrQ+tT60vra8T1/m5acw9cu60vv0G79pYVA==</latexit>

(think binary)

Consider following 
circuit:

However, in the end can only measure one of the 8 possible states, so 
need to think carefully how to use this parallelism
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A quantum computer can compute the 2N amplitudes 
using polynomial number of operators

3

type of fermion can be treated using a density matrix for-
malism [23], where each splitting function is represented
through a splitting matrix as

Pi!j�(✓) |fii hfj | . (10)

In the limit of g12 ! 0 we have Pi!j�(✓) ! �i,jg
2
i P̂ (✓),

but for non-zero g12 the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.

In what follows, we construct a quantum algorithm
to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algorithm
is to encode the particles as qubits (Appendix A) and
first rotate to a particle basis where there is no mix-
ing between fermion states (Appendix B). In this su-
perposition basis, emissions between states are uncorre-
lated. Sudakov factors can then be used to govern the no
emission probability of the uncorrelated fermions. The
bulk of the quantum circuitry will then be dedicated to
book-keeping, to encode the emission history and decide
which fermions/bosons radiate/split at a given step in
the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm for one of N

steps. The circuit calls for six registers, which are are de-
tailed in Appendix A and summarized in Table I. The ini-
tial state consists of nI particles (which can be fermions
or bosons) in the f1/2 basis. One starts by rotating this
initial particle state from the f1/2 basis to the fa/b ba-
sis, using a simple unitary R operation discussed in Ap-
pendix B. Then, a series of operations evolving the par-
ticles states are applied: the number of particles of each
type are counted (Ucount), Sudakov factors are used to de-
termine if an emission occurred (Ue), given an emission, a
particular particle is chosen to radiate/branch (Uh), and

the resulting particle state is updated (U (m)
p ). Finally,

the state is rotated back to the f1/2 basis through the
R

† operation. This process is repeated for all of the N

steps. The rotation needs to be performed separately at
each step because in general the matrix R depends on ✓

through the running of the couplings. At each step, there
are four operations, which are summarized in Table II.
More details can be found in the appendices.

Performing the evolution in the fa/b basis and then
rotating to the f1/2 basis, creates interferences between
equivalent final states which had di↵erent intermediate
fermions. One event is generated by measuring all of
the qubits after the final rotation back to the f1/2 basis.
By repeating the entire process, we can generate a large
number of events which we can then use to compute phys-
ical observables for our theory. The number of standard
quantum gates (single qubit and CNOT gates) required
at each step is discussed in Appendix I and summarized
in Table II.

Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog2(N + nI)e
|ei Did emission happen? 1

|n�i Number of bosons dlog2(N + nI)e
|nai Number of fa dlog2(N + nI)e
|nbi Number of fb dlog2(N + nI)e

TABLE I: All of the registers in the quantum circuit with
the number of qubits they require for N steps and nI initial
particles. The symbol d. . .e denotes the ceiling function.

|pi / R
(m) p p U

(m)
p R

(m)†

|hi / Uh h

|ei U
(m)
e e

|n�i /

Ucount

n�

Uh|nai / na

|nbi / nb

FIG. 1: Quantum circuit block for one step, to be repeated
N times for the full circuit.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. In order
to show an implementation of our algorithm, we there-
fore consider a special case that is amenable to measure-
ment on existing technology. This special case ignores
the � ! ff̄ splitting (naturally suppressed in gauge the-
ories, but not in the scalar-only theory), ignores the run-
ning coupling, and has only a single fermion (possibly
in a superposition) as the initial state. This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix I). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires ngates = 12N + 2 (Appendix G).
This model is however still su�ciently complex that the
classical MCMC described earlier2 fails to capture im-
portant quantum e↵ects when g12 6= 0.
Figure 2 presents the normalized di↵erential cross sec-

tions of four examples from a class of observables,
P

i ✓
↵
i ,

for both classical simulations/calculations, quantum sim-
ulators [29], and chip experiments of public and Hub

2
While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix K. However, this algorithm only works when ne-

glecting the � ! ff̄ and cannot solve our full model.

Operation Scaling

count particles 
Ucount

N lnN

decide emission 
Ue

N4 lnN

create history 
Uh

N5 lnN

adjust particles 
Up

N2 lnN

13

FIG. 11: The number of standard qubit gates as a function
of the number of states, using the formulae given in

Eqs. (G4), (G6), (G9) and (G11) . The asymptotic behavior
is illustrated with a fit to N

5 lnN .

Appendix H: Results for two steps

Figure 12 presents an overview of the possible out-
comes from running the full circuit with two steps. In
this case with N = 2, 24 total qubits were used. Sev-
eral interesting features can be observed from this result.
First, given that the initial state in a single f1 fermion,
for g12 = 0 one can only end up in a state containing an
odd number of f1 fermions. In contrast, for g12 = 1, even
with no emissions the fermion can change type. This can
be traced to virtual corrections involving fermion chang-
ing interactions. This figure also gives a sense how big
the e↵ect of � ! ff̄ splittings is (first three sets of bars
versus last three sets of bars) for the chosen parameter
values. This simulation is also used to predict the distri-
bution of observables shown in Fig. 2.

Appendix I: Circuit with no � ! ff̄

Ignoring the � ! ff̄ splittings, ignoring the running
coupling, and starting with only one fermion (possibly in
a superposition) as the initial state, allows us to dras-
tically simplify our quantum circuit, since all one needs
now is a single qubit which represents the fermion fla-
vors, and a boson register, which keeps track of whether
or not a boson was emitted at a given step. This boson
register is the equivalent to the emission register plus the
particle register in the general circuit. We no longer need
a history register, since we know the fermion is the only
particle which can emit, nor do we need the count reg-

isters since in this limit the probability of a boson being
emitted only depends on the flavor of the fermion. The
full evolution can be carried out with the much simpler
circuit shown in Figure 13.
The U and U

† gates are the same as in Eq. (B5), while

the U
a/b
i gates are given by the matrices

U
a/b
k =

 p
�a/b(✓k) �

p
1��a/b(✓k)p

1��a/b(✓k)
p

�a/b(✓k)

!
, (I1)

which encode the amplitude for the fermion to emit or
not emit a boson at a given step. These gates are con-
trolled on the fermion state since the gate parameters
depend on the flavor of the fermion. The circuit con-
struction demonstrates that the scaling for generating a
single event is linear with the number of steps.
At each step the U

a and U
b gates are conditionally

applied to a new qubit, but after that the qubit is left
alone until the final measurement at the end of the evo-
lution. Therefore, at each step one could measure the
qubit on which the U

a/b gates act on, store the result
in a classical register, reset it to the initial |0i state and
reuse it for the next step. Using this method of repeated
measurements and resetting the measured qubits one can
rewrite the circuit in terms of just two qubits as shown
in Figure 14. At each step one records the measurement
on the second qubit, and at the very end the first qubit
is measured. The combination of these measurements
makes up one event. Note that because this circuit can
be implemented using just 2 qubits, one can in fact find
an e�cient quantum inspired classical algorithm. This is
derived in Appendix K.
We now discuss how to implement this circuit on cur-

rently available hardware. Given that repeated mea-
surements as used in Figure 14 is not possible on cur-
rently existing hardware, we use the circuit shown in Fig-
ure 13. To implement this, one needs to break down the
controlled operations into standard gates, namely single
qubit gates and CNOT gates. To achieve this, one first
uses the well known result

X • X

=

U U

In our case the gate U consists of a RY (✓) rotation
gate. Furthermore, we use the fact that for an arbitrary
controlled-U operation, one has

• • • P

=

U C B A

where

P =

 
1 0

0 e
i 

!
, (I2)

At each discreet time interval, algorithm 
rotates from f1, f2 basis to fa, fb basis, 
performs shower in 4 separate steps,

and rotates back to f1, f2 basis
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The basic idea of the 4 steps can be understood quite 
easily from parton shower intuition

Count the particles
Total emission probability is product of 

Sudakov factor for each particle 

Δ(m) = [Δa(θm)]na [Δb(θm)]nb Δϕ(θm)]nϕ

Need information about the total number of particles of each type

8

Since each particle is represented by a 3-qubit state,
the operation R that rotates a single particle from the
f1/2 basis to the fa/b basis is represented by a 8 ⇥ 8
unitary matrix R, and it must be applied to all of these
3-qubit particle states. It is defined in terms of the matrix
U , introduced in Eq. (B5). For the representation of the
particles given in Appendix A, one has

R =

0

BBB@

I 0 0 0

0 I 0 0

0 0 U 0

0 0 0 U

1

CCCA
, (B7)

where I denotes the 2⇥2 identity matrix. The rotation R

correctly mixes the fermion states, while it leaves alone
the |�i and |0i states. Because of the running of the
coupling constants the matrix U , and in turn the matrix
R, will be di↵erent at each step in the evolution.

Appendix C: Populating the register for counting
the particles

In this section we give details about the operation
which counts the number of each particle type in the
current state and stores these numbers in the count reg-
isters |n�i, |nai and |nbi. As discussed, at the beginning
of each step they are in the state |0i. To perform this

counting we apply the controlled U
(m)
count gate, which is

broken down in Figure 3. For each particle in the state
|pi we apply the unitary operation U+ to the appropriate
count register. The operation U+ is defined on a set of
integer states ranging from 0 . . . N + nI as

U+ |ni = |n+ 1imodN+nI
, (C1)

or in matrix form, (U+)ij = 1 if j = i+ 1 mod (N + nI)
and 0 otherwise. This is a simple operation, and the
gate decomposition of the U+ operator can be found in
Appendix G.

|pi / � a b |pi / p

|n�i / U+ ⌘ |n�i /

Ucount|nai / U+ |nai /

|nbi / U+ |nbi /

FIG. 3: The circuit operation for counting the particles.

Appendix D: Sudakov factors in the quantum circuit

In this section we discuss how we implement the second
operation required in each step, which decides whether

an emission happens or not. In the a/b basis the split-
ting can not change the flavor of the emitting fermion,
and the evolution can therefore be described in terms of
individual splitting functions and Sudakov factors, just
as in a usual MCMC. For the fermions there are 2 di↵er-
ent splitting functions

Pi!i�(✓) = g
2
i P̂f (✓) , (D1)

where i 2 {a, b}. The splitting of the bosons is given by

P�!īi(✓) = g
2
i P̂�(✓) , (D2)

Using these splitting functions, one can define Sudakov
factors, which describe the probability to have no emis-
sion from a given particle in a given step m. One finds

�i(✓m) ⌘ exp [��✓ Pi(✓m)]

��(✓m) ⌘ exp [��✓ P�(✓m)] , (D3)

where

Pi(✓m) ⌘ Pi!i�(✓m)

P�(✓m) ⌘ P�!aā(✓m) + P�!bb̄(✓m) , (D4)

and

�✓ = ✓m � ✓m+1 . (D5)

The probability to have no emission from a state con-
taining n� bosons and na/b fermions of type a/b, is then
given by

�(m)(✓m) = �
n�

� (✓m)�na
a (✓m)�nb

b (✓m) . (D6)

From this one can derive the probability to have a branch-
ing at a given step, which is given by

qp(✓m) ⌘
Z ✓m+1

✓m

d✓Pp(✓m)�p(✓m, ✓)

= 1��p(✓m, ✓m+1) . (D7)

One therefore finds the unitarity condition

�p(✓m, ✓m+1) + qp(✓m) = 1 . (D8)

This splitting probability can be encoded in the quan-

tum circuit through the rotation U
(m)
e on the qubit |ei.

It starts o↵ in the state |0i and is transformed to |1i if
there is an emission and stays in the |0i state if there is
no emission. The emission matrix is given by

U
(m)
e =

 p
�(m)(✓m) �

p
1��(m)(✓m)p

1��(m)(✓m)
p

�(m)(✓m)

!
.

(D9)

Can show that this 
counting step 

is linear in 
n[qbits] = lnN 

Total scaling is N lnN 

Operation Scaling

count particles 
Ucount

N lnN

decide emission 
Ue

N4 lnN

create history 
Uh

N5 lnN

adjust particles 
Up

N2 lnN
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The basic idea of the 4 steps can be understood quite 
easily from parton shower intuition

Decide emission (did it happen or not?)
Emission can be written as 

simple Unitary transformation

8

Since each particle is represented by a 3-qubit state,
the operation R that rotates a single particle from the
f1/2 basis to the fa/b basis is represented by a 8 ⇥ 8
unitary matrix R, and it must be applied to all of these
3-qubit particle states. It is defined in terms of the matrix
U , introduced in Eq. (B5). For the representation of the
particles given in Appendix A, one has

R =

0

BBB@

I 0 0 0

0 I 0 0

0 0 U 0

0 0 0 U

1

CCCA
, (B7)

where I denotes the 2⇥2 identity matrix. The rotation R

correctly mixes the fermion states, while it leaves alone
the |�i and |0i states. Because of the running of the
coupling constants the matrix U , and in turn the matrix
R, will be di↵erent at each step in the evolution.

Appendix C: Populating the register for counting
the particles

In this section we give details about the operation
which counts the number of each particle type in the
current state and stores these numbers in the count reg-
isters |n�i, |nai and |nbi. As discussed, at the beginning
of each step they are in the state |0i. To perform this

counting we apply the controlled U
(m)
count gate, which is

broken down in Figure 3. For each particle in the state
|pi we apply the unitary operation U+ to the appropriate
count register. The operation U+ is defined on a set of
integer states ranging from 0 . . . N + nI as

U+ |ni = |n+ 1imodN+nI
, (C1)

or in matrix form, (U+)ij = 1 if j = i+ 1 mod (N + nI)
and 0 otherwise. This is a simple operation, and the
gate decomposition of the U+ operator can be found in
Appendix G.

|pi / � a b |pi / p

|n�i / U+ ⌘ |n�i /

Ucount|nai / U+ |nai /

|nbi / U+ |nbi /

FIG. 3: The circuit operation for counting the particles.

Appendix D: Sudakov factors in the quantum circuit

In this section we discuss how we implement the second
operation required in each step, which decides whether

an emission happens or not. In the a/b basis the split-
ting can not change the flavor of the emitting fermion,
and the evolution can therefore be described in terms of
individual splitting functions and Sudakov factors, just
as in a usual MCMC. For the fermions there are 2 di↵er-
ent splitting functions

Pi!i�(✓) = g
2
i P̂f (✓) , (D1)

where i 2 {a, b}. The splitting of the bosons is given by

P�!īi(✓) = g
2
i P̂�(✓) , (D2)

Using these splitting functions, one can define Sudakov
factors, which describe the probability to have no emis-
sion from a given particle in a given step m. One finds

�i(✓m) ⌘ exp [��✓ Pi(✓m)]

��(✓m) ⌘ exp [��✓ P�(✓m)] , (D3)

where

Pi(✓m) ⌘ Pi!i�(✓m)

P�(✓m) ⌘ P�!aā(✓m) + P�!bb̄(✓m) , (D4)

and

�✓ = ✓m � ✓m+1 . (D5)

The probability to have no emission from a state con-
taining n� bosons and na/b fermions of type a/b, is then
given by

�(m)(✓m) = �
n�

� (✓m)�na
a (✓m)�nb

b (✓m) . (D6)

From this one can derive the probability to have a branch-
ing at a given step, which is given by

qp(✓m) ⌘
Z ✓m+1

✓m

d✓Pp(✓m)�p(✓m, ✓)

= 1��p(✓m, ✓m+1) . (D7)

One therefore finds the unitarity condition

�p(✓m, ✓m+1) + qp(✓m) = 1 . (D8)

This splitting probability can be encoded in the quan-

tum circuit through the rotation U
(m)
e on the qubit |ei.

It starts o↵ in the state |0i and is transformed to |1i if
there is an emission and stays in the |0i state if there is
no emission. The emission matrix is given by

U
(m)
e =

 p
�(m)(✓m) �

p
1��(m)(✓m)p

1��(m)(✓m)
p

�(m)(✓m)

!
.

(D9)
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|ei / U
(m)
e

|n�i / n�

|nai / na

|nbi / nb

FIG. 4: circuit operation for determining whether an
emission occurred at the m

th step.

Appendix E: Selecting a particle to radiate or split

The second operation discussed in the previous ap-
pendix only decided if an emission happened or not, but
did not have any information about which of the exist-
ing particles the emission originated from. This deci-
sion happens in the third operation, which creates the
emission history by deciding if an emission happened,
which particle might have emitted and assigning the cor-
rect amplitude for the given splitting. In order to select
the histories one needs to “loop” over all particles in the
register, up to the (m+ nI)th particle for step m, which
can be written in terms of sub-operations as shown in
Figure 5. Each sub-operation controls on one of the |pii

|piM / p

. . .

|pi2 / p

|pi1 / p

|him / U
(m,1)
h U

(m,2)
h U

(m,M)
h

/0

|ei • • . . . • X

|n�i /

U
(m,1)
h U

(m,2)
h U

(m,M)
h

|nai /

|nbi /

FIG. 5: Details of the circuit for the second operation in
each step. One loops over all particles up to M = m+ nI for

step m.

in the particle register, and the final operation ensures
that the emission qubit is back in the |0i state after the
operation. The sub-operation which controls on the k

th

particle is shown in Figure 6. Here a control on |pki
means that the controlled unitary operation Uh depends
on the flavor of particle pk, while �k, ak and bk are true or
false if |pik is either a boson, an a-fermion, or a b-fermion,
respectively.

|pik / p p � a b

|him / U
(m,k)
h U

(m,k)
h

|ei • ⌘ •

|n�i /

U
(m,k)
h

n� U�

|nai / na U�

|nbi / nb U�

FIG. 6: Circuit for the k
th sub-operation from the second

operation in each step.

For each particle in |pi we apply U
(m,k)
h if the emission

has occurred in the given step. U (m,k)
h is a 2⇥ 2 unitary

sub-matrix which always acts between the states |0i and
|ki of |him. Defining

P (n�, na, nb)(✓m) =
X

p

npPp(✓m) , (E1)

where Pa, Pb and P� are given coe�cients, the mentioned
2⇥ 2 submatrix is given by

U
(m,k)
h =

0

@

q
1� Ppk

(✓m)

P (n�,na,nb)
�
q

Ppk
(✓m)

P (n�,na,nb)q
Ppk

(✓m)

P (n�,na,nb)

q
1� Ppk

(✓m)

P (n�,na,nb)

1

A .

(E2)

The coe�cients of the matrix U
(m,k)
h depend on n�, na

and nb, which is why we control on the count registers.
Thus, if an emission has occurred, in each sub-operation

the controlled U
(m,k)
h gate rotates between the states |0i

and |ki in the |hi register. This is done recursively in a
way that builds up the correct amplitudes for each pos-
sible emission history.

After each application of U (m,k)
h , the count register is

reduced, changing the value of P (n�, na, nb)(✓m) in the
next step. For example, if it was a fa which emitted, the
count na will go to to na � 1. This means in particular
that in the last sub-operation one has

P (n�, na, nb)(✓m) = Ppk(✓m) , (E3)

such that the last of the 2 ⇥ 2 sub-matrix is always of
form

U
(m,m)
h =

 
0 �1

1 0

!
(E4)

As a result, in the last sub-operation the amplitude of
the |0i state of |him is fully transferred to the |mi state.
In the history register, this operation generates a su-

perposition of states corresponding to all the possible

Δ(m) = [Δa(θm)]na [Δb(θm)]nb Δϕ(θm)]nϕ

where from before Sudakov factor depends on ni

This can be 
implemented
using a simple
quantum circuit

Performing the controls on the ni values
is somewhat expensive (N3 operations)

Scaling is N4 lnN 

Operation Scaling

count particles 
Ucount

N lnN

decide emission 
Ue

N4 lnN

create history 
Uh

N5 lnN

adjust particles 
Up

N2 lnN
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The basic idea of the 4 steps can be understood quite 
easily from parton shower intuition

Create history (which particle emitted?)
Once we know an emission happened, 

decide which particle did emission

Relative probability given by
Pk(θm)

∑k Pk(θm)

Complicated operation, which depends on type of all particles available
⟹ exponentially possible combinations

One can find an operation that only grows polynomially with N

Does this imply exponential number of operations?

Operation Scaling

count particles 
Ucount

N lnN

decide emission 
Ue

N4 lnN

create history 
Uh

N5 lnN

adjust particles 
Up

N2 lnN
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The basic idea of the 4 steps can be understood quite 
easily from parton shower intuition

Create history (which particle emitted?)

9

|ei / U
(m)
e

|n�i / n�

|nai / na

|nbi / nb

FIG. 4: circuit operation for determining whether an
emission occurred at the m

th step.

Appendix E: Selecting a particle to radiate or split

The second operation discussed in the previous ap-
pendix only decided if an emission happened or not, but
did not have any information about which of the exist-
ing particles the emission originated from. This deci-
sion happens in the third operation, which creates the
emission history by deciding if an emission happened,
which particle might have emitted and assigning the cor-
rect amplitude for the given splitting. In order to select
the histories one needs to “loop” over all particles in the
register, up to the (m+ nI)th particle for step m, which
can be written in terms of sub-operations as shown in
Figure 5. Each sub-operation controls on one of the |pii
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in the particle register, and the final operation ensures
that the emission qubit is back in the |0i state after the
operation. The sub-operation which controls on the k

th

particle is shown in Figure 6. Here a control on |pki
means that the controlled unitary operation Uh depends
on the flavor of particle pk, while �k, ak and bk are true or
false if |pik is either a boson, an a-fermion, or a b-fermion,
respectively.
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For each particle in |pi we apply U
(m,k)
h if the emission

has occurred in the given step. U (m,k)
h is a 2⇥ 2 unitary

sub-matrix which always acts between the states |0i and
|ki of |him. Defining

P (n�, na, nb)(✓m) =
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p

npPp(✓m) , (E1)

where Pa, Pb and P� are given coe�cients, the mentioned
2⇥ 2 submatrix is given by
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The coe�cients of the matrix U
(m,k)
h depend on n�, na

and nb, which is why we control on the count registers.
Thus, if an emission has occurred, in each sub-operation

the controlled U
(m,k)
h gate rotates between the states |0i

and |ki in the |hi register. This is done recursively in a
way that builds up the correct amplitudes for each pos-
sible emission history.

After each application of U (m,k)
h , the count register is

reduced, changing the value of P (n�, na, nb)(✓m) in the
next step. For example, if it was a fa which emitted, the
count na will go to to na � 1. This means in particular
that in the last sub-operation one has

P (n�, na, nb)(✓m) = Ppk(✓m) , (E3)

such that the last of the 2 ⇥ 2 sub-matrix is always of
form

U
(m,m)
h =

 
0 �1

1 0

!
(E4)

As a result, in the last sub-operation the amplitude of
the |0i state of |him is fully transferred to the |mi state.
In the history register, this operation generates a su-

perposition of states corresponding to all the possible
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As a result, in the last sub-operation the amplitude of
the |0i state of |him is fully transferred to the |mi state.
In the history register, this operation generates a su-

perposition of states corresponding to all the possible

with

At each step, assigns the correct
amplitude to integer k (particle pk) 
and keeps unassigned in state |0>

Defining                             , the following 
algorithm does the correct thing

∑
k

Pk(θm) = P(na, nb, nϕ)

Scaling is N5 lnN 

Operation Scaling

count particles 
Ucount

N lnN

decide emission 
Ue

N4 lnN

create history 
Uh

N5 lnN

adjust particles 
Up

N2 lnN
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The basic idea of the 4 steps can be understood quite 
easily from parton shower intuition

Adjust particles (adjust the flavors based 
on the emission)
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emissions which could have happened. The amplitude
for the emission to be associated with a particle pk is
given by

Apk =

s
PpkP
pk

Ppk

, (E5)

but this procedure includes the interference from all pos-
sible flavors each particle can have.

Notice that at the end of the step, the U� gates have
been applied conditionally on all of the particles in |pi,
which is exactly the inverse of the first operation, where
we counted the particles. As a result the three count
registers will be back to the initial state |0i at the end
of each step, ready to be used again. Furthermore, the
emission register is reset back to |0i by the last controlled
X operation.

Appendix F: Adjusting the particle state

The final operation in each step adjusts the particle
flavors according to the emissions that happened. For
example, if a boson splits into a faf̄a pair, we must re-
move a � from |pi and add an fa and an f̄a. In general,
if it is a fermion that emits we simply have to add a
boson to the |pi register, while if it is a boson which
emits we must add fermion-antifermion pair to |pi and
remove the boson which emitted. The schematic of the
circuit which performs this operation is shown in Figure
7. Each sub-register in |pi, made up of three qubits, cor-

|piM+1 / Up

|pik / Up

|him / k

FIG. 7: Circuit for the operation at step m which fixes the
particle register after the emission has happened. As before,
M = m+ nI � 1. Notice that if we control on |hi being in
the |ki state, we apply Up to the k

th sub-register |pik and
the (M + 1)th sub-register |piM+1.

responds to one particle state and can be in any of six
possible states: 0, �, fa, fb, f̄a and f̄b. The sub-register
|piM+1 will encode the new particle which has just been
emitted and it always starts out in the 0 state, while
the registers below encode the previous particle states.
The operation labeled Up, conditional on the kth state in
|hi, is a map from the k

th and (M + 1)th particle states
before the emission, and the same particle states after
the emission. Notice that this operation is controlled on
the history states, which specify which particle emitted,

though they do not hold the information of what kind of
particle that was. That information is provided by the
k
th particle state. The Up gate is always the same and

we want it to take

|fii |0i ! |fii |�i��f̄i
↵
|0i !

��f̄i
↵
|�i

|�i |0i !
X

i=a,b

ĝi

�
|fii

��f̄i
↵
+

��f̄i
↵
|fii

�
, (F1)

where

ĝi ⌘
gip

2(g2a + g
2
b )

. (F2)

Here we used the vector representation of the particle
states given in Eq. (A1). We can write this transforma-
tion as a single unitary operator as follows:

Up =
X

i=a,b

|fii |�i hfi| h0|+
X

i=1,b

��f̄i
↵
|�i

⌦
f̄i

�� h0| (F3)

+
X

i=a,b

ĝi

�
|fii

��f̄i
↵
+

��f̄i
↵
|fii

�
h�| h0| .

Since the particle states of di↵erent flavors are orthogo-
nal to one another, this transformation is unitary. The
circuit decomposition of Eq. (F3) can be found in Ap-
pendix G.

Appendix G: Circuit Decomposition

We now explain in some detail how to break down
the operations in our general quantum circuit from Fig-
ure 1 (including � ! ff̄ and the running coupling) into
standard quantum gates (single qubit gates and CNOT
gates), so that we can run the circuit on a simulator
and eventually on an actual testbed. While every e↵ort
was made to find an e�cient breakdown of the circuit,
we anticipate that a reduction in the number of stan-
dard quantum gates is still possible. The following dis-
cussion gives the number of gates required for each step
0  m < N � 1 in the evolution. Table II gives the
number of gates needed after summing over all steps.

1. The first sub-operation, Ucount

We start with the counting operation shown in Fig-
ure 3. We store integers in the counting registers using
the conventional bit representation, then the U+ gate (see
Appendix C) can be implemented as shown in Figure
8. A general integer a has the form |q`...q3q2q1i, where
` = dlog2(a)e is the number of bits necessary to store the
integer (we round up to the nearest integer). Therefore,
in our circuit the number of gates needed to implement
a specific U+ gate depends on the maximum integer we
might have to store. As shown in Figure 3, the U+ gate is

If the particle that emitted is a fermion, add a 
boson. If emitted particle is boson, add 
fermion and change boson to fermion

Can be implemented rather easily

Up =
X

i=a,b

|fii |�i hfi| h0|+
X

i=1,b

��f̄i
↵
|�i

⌦
f̄i
�� h0|

+
X

i=a,b

ĝi
�
|fii

��f̄i
↵
+

��f̄i
↵
|fii

�
h�| h0|
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8. A general integer a has the form |q`...q3q2q1i, where
` = dlog2(a)e is the number of bits necessary to store the
integer (we round up to the nearest integer). Therefore,
in our circuit the number of gates needed to implement
a specific U+ gate depends on the maximum integer we
might have to store. As shown in Figure 3, the U+ gate is

with

12

of the |0i state. Therefore, the number of standard gates
necessary to apply the controlled-U� operations when
simulating the m

th step is ccount(m,nI) given in (G3).
In the first part of the sub-operation circuit, the gate

Uh has the same controls on the count registers that we
found in the emission operation, plus having controls on
the particle state and on the emission qubit (which has
to be in the |1i state for an emission to have happened).
As we have seen the particle state can be in any of six
states specified by three qubits; however, the emission
probability is the same for particle and anti-particle, and
no Uh is the identity if the particle is in state |0i. There-
fore the number of possible combinations of particle state
and count states in sub-operation j is 3 c(m,nI), which
is the number of times we must apply Uh gates controlled
on 4 + 3dlog2(m + nI � j)e qubits. The history register
contains states labeled by integers from 0 to m+ nI and
we use the standard bit representation to encode these
integers in qubits. For the j

th sub-operation the matrix
Uh is an a⇥ a unitary matrix, where a = 2b with

b = dlog2(j)e . (G7)

Uh only di↵ers from the identity matrix in the row / col-
umn 1 and (j+1), which form the submatrix in Eq. (E2).
Therefore, Uh is a particular type of two-level unitary
transformation acting on b qubits, which we call U [b].
There is a standard procedure to break such matrices
U [b] down into standard qubit gates, and one can use
this result to derive a break-down of a controlled U [b]
transformation. One finds
���C(n)[U [b]]

��� = 32(n� 1) +
���C(1)[U [b]]

���

= 32(n� 1) + 2(b� 1)
���C(1)[X]

���+
���C(1)[U ]

���

= 64b2 � 94b+ 32n+ 3 . (G8)

For our case we have n = 4 + 3dlog2(m + nI � j)e),
and combining these results the total number of stan-
dard gates necessary to implement the controlled-Uh op-
erations is

Nsub3(m,nI) =
m+nIX

j=1

"
ccount(m,nI)

+ 3c(m,nI)
���C(4+3dlog2(m+nI�j)e)[U [b]]

���

#
. (G9)

4. The fourth sub-operation, U (m)
p

Lastly, we must break down the operation in which we
adjust the particle states in |pi. Given the transformation
in Eq. (F3), we can implement Up e�ciently as shown
in Figure 10. In the circuit H is the Hadamard gate and
Ur is given by

Ur =
1p

g2a + g
2
b

 
ga �gb

gb ga

!
. (G10)

Ur

H

• • • • •

8
>>>><

>>>>:
|pki

•

•

8
>>>><

>>>>:
|pji

FIG. 10: The circuit which implements the Up operation.
Here, k = m+ nI .

The operation Up is controlled on the possible states
in |hi. There are m + nI such states, each requiring
dlog2(m + nI)e controls. Thus, for each of the m + nI

occurrences of Up one adds dlog2(m + nI)e controls to
each operation in Fig. 10. This gives

Nsub4(m,nI) = (m+ nI) (224dlog2(m+ nI)e+ 143) .
(G11)

standard gates.

5. Summary

Adding all sub-operations together and summing over
0 < m < N � 1, one finds that the overall scaling of our
circuit is N5 lnN . Fig. 11 shows the number of gates as
a function of N for N < 50.

Note that one can obtain a much shallower circuit re-
quiring less qubits if one takes into account that in the
end states with di↵erent history registers do not interfere
with one another. This implies that one can measure the
history register after the third operation in each step, and
reset it back to zero. This collapses the quantum state
to one with a definite history. Having a state with a defi-
nite history gives definite knowledge about the number of
bosons n�, as well as the total number of particles ntot.
This is because the history allows us to infer how many
emissions have happened, which means that the state has
a definite number of particles; since one also knows at any
step at which an emission happened if the emitting parti-
cle was a fermion or a boson, one knows the total number
of bosons. Thus, instead of counting and keeping track of
the 3 values n�, na and nb, it su�ces to only keep track
of na and from that derive nb = ntot�n��na. Following
similar steps outlined in this section in this case, one can
easily see that the scaling of the depth of the circuit is
reduced significantly, with an overall scaling of N3 lnN ,
instead of the N

5 lnN . Unfortunately, current quantum
hardware does not allow for such repeated measurements.

Scaling is N2 lnN 

Operation Scaling

count particles 
Ucount

N lnN

decide emission 
Ue

N4 lnN

create history 
Uh

N5 lnN

adjust particles 
Up

N2 lnN
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FIG. 2: The normalized di↵erential cross section of the observables
P

i ✓
↵
i for ↵ = 0 (bottom right), ↵ = 1 (bottom left),

↵ = 2 (top right), and ↵ = 1 (top left). The ↵ = 1 case is simply represented as the angle of the first emission. Interference
e↵ects are turned on (g12 = 0) and o↵ (g12 = 0), where the classical simulations/calculations are expected to agree with the

quantum simulations and measurements. As a demonstration of the full circuit with � ! ff̄ is also included with two
simulated steps both with g12 = 0 and g12 = 1. Over 105 events contribute to each line.

Member quantum chips through cloud access on the IBM
Quantum Experience. All cases are started from the ini-
tial state containing a single f1 fermion. The data of
experimental measurements shown in Figure 2 were col-
lected on the IBM Q 5 Tenerife chip. This quantum com-
puter has five qubits, so N = 4 is the maximum number

of steps that can be modeled. In addition to presenting
the simplified model with both quantum hardware and
simulations, Figure 2 also shows a simulation with the
full model (including � ! ff̄) for 2 steps.

For the top left plot, the histogram of the 4 step quan-
tum simulation agrees exactly with the 24 step simula-

Number of qbits still larger than what is available on current 
hardware. But we can simulate something simpler...

Removing φ → ff splittings and starting from single fermion simplifies things a lot,
since only one fermion throughout whole evolution process 

1. No need to keep track of numbers na, nb, nφ
2. All emission probabilities equal (determined by single fermion)
3. Since only the one fermion can split, no need to track history
4. Every emission simply adds one fermion

Much simpler algorithm

14

FIG. 12: The distribution of final states after two steps when running the full circuit including � ! ff̄ (but still no running
coupling) and starting with the state f1. When g12 = 1, the transition f1 ! f2 can happen due to interference e↵ects.
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FIG. 13: A quantum shower for the interfering model with
no � ! ff̄ splitting and no running coupling.
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FIG. 14: A quantum shower for the interfering model with
no � ! ff̄ splitting using only 2 qubits. The Ui blocks
correspond to the U

i
a, U

i
b controlled operations from

Figure 13.

and the following conditions are satisfied

U = exp(i )AXBXC ; ABC = I . (I3)

To apply this to the controlled-RY (✓) gate one chooses

A = RY (↵) B = RY (�) C = RY (↵) , (I4)

where ↵, � and  satisfy

↵ =
✓

4
� = �✓

2
,  = 0 . (I5)

This gives gates A, B, C, P (where P is the trivial iden-
tity matrix) that satisfy all conditions. Using this infor-
mation one finds that each step requires a total of 12 sim-
ple quantum gates (8 single qubit gates and four CNOT
gates), and in addition two transformations are required
at the beginning and end of the circuit which also consist
of single qubit gates. Generating a single event therefore
requires a total of

ngates = 12N + 2 (I6)

single qubit and CNOT gates.

Appendix J: Renormalization of the theory

When computing higher order corrections to the sim-
ple model given in Eq. (1) one encounters divergences
as in any quantum field theory. These divergences can
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There are many more things that can be done using 
quantum computers, and it is fun to explore possibilities

1. There are many basic operations that are know how to do on a QC
• Fourier Transform
• Measuring phase of an eigenstate
• Time evolution of a quantum mechanical system
• ...

2. In fact, it was shown how one can simulate an entire QFT on a 
quantum computer
• Shown for both scalars and fermions
• Works at least in principle for strongly interacting theories
• Resource requirements prohibitively expensive

Very interesting to figure out what is possible with this 
completely different way to perform computations


