

A quantum algorithm for high energy physics simulations

Christian Bauer, Wibe de Jong, Ben Nachman, Davide Provasoli 1904.03196

Christian Bauer

Interference effects are difficult to model in parton shower simulations

Parton showers are based on probabilistic MC approaches
Quantum interference effects not easily included in formalism

Several interference effects can appear
$1 / N_{c}$ effects in dipole
showers

y/Z interference in EW showers

CKM interference in EW showers

Christian Bauer
A quantum algorithm for high energy physics simulations

Consider a simpler toy model that exhibits interference effects similar to the CKM case

Yukawa theory with two types of fermions and mixing between them

$$
\begin{aligned}
\mathcal{L}= & \bar{f}_{1}\left(i \not \partial+m_{1}\right) f_{1}+\bar{f}_{2}\left(i \not \partial+m_{2}\right) f_{2}+\left(\partial_{\mu} \phi\right)^{2} \\
& +g_{1} \bar{f}_{1} f_{1} \phi+g_{2} \bar{f}_{2} f_{2} \phi+g_{12}\left[\bar{f}_{1} f_{2}+\bar{f}_{2} f_{1}\right] \phi
\end{aligned}
$$

Very simple Feynman rules

Many similarities with the CKM interference

Consider a simpler toy model that exhibits interference effects similar to the CKM case

$$
\begin{aligned}
\mathcal{L}= & \bar{f}_{1}\left(i \not \partial+m_{1}\right) f_{1}+\bar{f}_{2}\left(i \not \partial+m_{2}\right) f_{2}+\left(\partial_{\mu} \phi\right)^{2} \\
& +g_{1} \bar{f}_{1} f_{1} \phi+g_{2} \bar{f}_{2} f_{2} \phi+g_{12}\left[\bar{f}_{1} f_{2}+\bar{f}_{2} f_{1}\right] \phi
\end{aligned}
$$

The mixing g_{12} gives several interesting effects

Different real emission amplitudes give rise to interference

Virtual diagrams give rise to flavor change without radiation

Need to correct both real and virtual effects Similar to including subleading color

In the high energy limit where masses can be ignored, can diagonalize this problem

Interaction can be written in matrix notation

$$
\left(\bar{f}_{1}, \bar{f}_{2}\right)\left(\begin{array}{cc}
g_{1} & g_{12} \\
g_{12} & g_{2}
\end{array}\right)\binom{f_{1}}{f_{2}} \phi
$$

This can be diagonalized as

$$
\begin{gathered}
\left(\bar{f}_{1}, \bar{f}_{2}\right) U^{\dagger}\left(\begin{array}{cc}
g_{1} & g_{12} \\
g_{12} & g_{2}
\end{array}\right) U\binom{f_{1}}{f_{2}} \phi \equiv\left(\bar{f}_{a}, \bar{f}_{b}\right)\left(\begin{array}{cc}
g_{a} & 0 \\
0 & g_{b}
\end{array}\right)\binom{f_{a}}{f_{b}} \phi \\
g_{a}=\frac{g_{1}+g_{2}-g^{\prime}}{2}, \quad g_{b}=\frac{g_{1}+g_{2}+g^{\prime}}{2}, \quad g^{\prime}=\operatorname{sign}\left(g_{2}-g_{1}\right) \sqrt{\left(g_{1}-g_{2}\right)^{2}+4 g_{12}^{2}} \\
U=\left(\begin{array}{cc}
\sqrt{1-u^{2}} & u \\
-u & \sqrt{1-u^{2}}
\end{array}\right), \quad u=\sqrt{\frac{\left(g_{1}-g_{2}+g^{\prime}\right)}{2 g^{\prime}}}
\end{gathered}
$$

Thus, the theory can be transformed into a system of non-interacting fermions

This allows to compute splitting amplitudes using insight from parton showers

Parton showers are defined from splitting function and Sudakov factors and depend on an evolution variable

Discretize evolution variable and define (no-) emission probabilities (P) Δ

Emission depends on P of particle that emits and Δ of system at time t_{i}

However, computing the final result is exponentially hard in the number of final state particles

- Δ_{i} only depends on n_{a}, n_{b}, but different for each i
- P_{a} depends on flavor of each particle, but independent of i

There are two important facts to realize:

1. We need to rotate back to the f_{1}, f_{2} basis in the end, so need to compute amplitudes, not probabilities
2. Need the results for all possible final state particles f_{a}, f_{b}

This means that for each shower history, need amplitudes for all possible flavors of fermions

This grows like 2^{N} for N fermions

Since most of you have not thought about quantum computing, here is a very short primer

Every state is represented by quits. Examples are

$$
f_{a}=|0\rangle, f_{b}=|1\rangle, \quad|5\rangle=|101\rangle, \quad \text { true }=|0\rangle, \text { false }=|1\rangle
$$

We operate on these states with unitary operations (matrices)

All Unitary operations can be built out of a very small set of basic operations

Can perform controlled operations

Since most of you have not thought about quantum computing, here is a very short primer

On a quantum computer, can perform many calculations at once

Consider following circuit:

It performs operation
$|i\rangle|q\rangle \rightarrow|i\rangle U^{j}|q\rangle$
(think binary)

If start with superposition of all integers, perform 8 calculation with only 3 gates

$$
\sum_{i} \alpha_{i}|i\rangle|q\rangle \rightarrow \sum_{i} \alpha_{i}|i\rangle U^{j}|q\rangle
$$

However, in the end can only measure one of the 8 possible states, so need to think carefully how to use this parallelism

A quantum computer can compute the 2^{N} amplitudes using polynomial number of operators

At each discreet time interval, algorithm rotates from f_{1}, f_{2} basis to f_{a}, f_{b} basis, performs shower in 4 separate steps, and rotates back to f_{1}, f_{2} basis

Christian Bauer

The basic idea of the 4 steps can be understood quite easily from parton shower intuition

Count the particles

Total emission probability is product of Sudakov factor for each particle

$$
\left.\Delta^{(m)}=\left[\Delta_{a}\left(\theta_{m}\right)\right]^{n_{a}}\left[\Delta_{b}\left(\theta_{m}\right)\right]^{n_{b}} \Delta_{\phi}\left(\theta_{m}\right)\right]^{n_{\phi}}
$$

Operation	Scaling
count particles $\mathrm{U}_{\text {count }}$	$N \mathrm{InN}$
decide emission Ue	$\mathrm{N}^{4} \mathrm{InN}$
create history U_{h}	$\mathrm{N}^{5} \mathrm{InN}$
adjust particles U_{p}	$\mathrm{N}^{2} \mathrm{InN}$

Need information about the total number of particles of each type

Can show that this counting step is linear in n [qbits] $=\ln \mathrm{N}$

Total scaling is $\mathbf{N} \operatorname{InN}$

The basic idea of the 4 steps can be understood quite easily from parton shower intuition

Decide emission (did it happen or not?)

Emission can be written as simple Unitary transformation

$$
U_{e}^{(m)}=\left(\begin{array}{cc}
\sqrt{\Delta^{(m)}\left(\theta_{m}\right)} & -\sqrt{1-\Delta^{(m)}\left(\theta_{m}\right)} \\
\sqrt{1-\Delta^{(m)}\left(\theta_{m}\right)} & \sqrt{\Delta^{(m)}\left(\theta_{m}\right)}
\end{array}\right)
$$

Operation	Scaling
count particles $\mathrm{U}_{\text {count }}$	N InN
decide emission Ue	$\mathrm{N}^{4} \mathrm{InN}$
create history U_{h}	$\mathrm{N}^{5} \mathrm{InN}$
adjust particles U_{p}	$\mathrm{N}^{2} \mathrm{InN}$

where from before Sudakov factor depends on n_{i}

$$
\left.\Delta^{(m)}=\left[\Delta_{a}\left(\theta_{m}\right)\right]^{n_{a}}\left[\Delta_{b}\left(\theta_{m}\right)\right]^{n_{b}} \Delta_{\phi}\left(\theta_{m}\right)\right]^{n_{\phi}}
$$

This can be implemented using a simple quantum circuit

Performing the controls on the n_{i} values is somewhat expensive (N^{3} operations)

Scaling is $\mathrm{N}^{4} \mathrm{InN}$

The basic idea of the 4 steps can be understood quite easily from parton shower intuition

Create history (which particle emitted?)

Once we know an emission happened, decide which particle did emission

Operation	Scaling
count particles $U_{\text {count }}$	N InN
decide emission Ue	$\mathrm{N}^{4} \mathrm{InN}$
create history U_{h}	$\mathrm{N}^{5} \mathrm{lnN}$
adjust particles U_{p}	$\mathrm{N}^{2} \mathrm{InN}$

Relative probability given by

$$
\frac{P_{k}\left(\theta_{m}\right)}{\sum_{k} P_{k}\left(\theta_{m}\right)}
$$

Complicated operation, which depends on type of all particles available \Rightarrow exponentially possible combinations

Does this imply exponential number of operations?

One can find an operation that only grows polynomially with N

The basic idea of the 4 steps can be understood quite easily from parton shower intuition

Create history (which particle emitted?)

Defining $\sum P_{k}\left(\theta_{m}\right)=P\left(n_{a}, n_{b}, n_{\phi}\right)$, the following algorithm does the correct thing

Operation	Scaling
count particles $U_{\text {count }}$	$N \mathrm{InN}$
decide emission Ue	$\mathrm{N}^{4} \mathrm{InN}$
create history U_{h}	$\mathrm{N}^{5} \mathrm{InN}$
adjust particles U_{p}	$\mathrm{N}^{2} \mathrm{InN}$

$U_{h}^{(m, k)}=\left(\begin{array}{cc}\sqrt{1-\frac{P_{p_{k}}\left(\theta_{m}\right)}{P\left(n_{\phi}, n_{a}, n_{b}\right)}} & -\sqrt{\frac{P_{p_{k}}\left(\theta_{m}\right)}{P\left(n_{\phi}, n_{a}, n_{b}\right)}} \\ \sqrt{\frac{P_{p_{k}}\left(\theta_{m}\right)}{P\left(n_{\phi}, n_{a}, n_{b}\right)}} & \sqrt{1-\frac{\left.P_{p_{k}} \theta_{m}\right)}{P\left(n_{\phi}, n_{a}, n_{b}\right)}}\end{array}\right)$
At each step, assigns the correct amplitude to integer k (particle p_{k}) and keeps unassigned in state I0>
Scaling is $\mathrm{N}^{5} \mathrm{InN}$

The basic idea of the 4 steps can be understood quite easily from parton shower intuition

Adjust particles (adjust the flavors based

 on the emission)If the particle that emitted is a fermion, add a boson. If emitted particle is boson, add fermion and change boson to fermion

Operation	Scaling
count particles $\mathrm{U}_{\text {count }}$	$N \mathrm{InN}$
decide emission U_{e}	$\mathrm{N}^{4} \mathrm{InN}$
create history U_{h}	N 5 InN
adjust particles Up	$\mathrm{N}^{2} \mathrm{InN}$

Can be implemented rather easily

$$
\begin{aligned}
U_{p}= & \sum_{i=a, b}\left|f_{i}\right\rangle|\phi\rangle\left\langle f_{i}\right|\langle 0|+\sum_{i=1, b}\left|\bar{f}_{i}\right\rangle|\phi\rangle\left\langle\bar{f}_{i}\right|\langle 0| \\
& +\sum_{i=a, b} \hat{g}_{i}\left(\left|f_{i}\right\rangle\left|\bar{f}_{i}\right\rangle+\left|\bar{f}_{i}\right\rangle\left|f_{i}\right\rangle\right)\langle\phi|\langle 0| \\
& \text { with } \hat{g}_{i} \equiv \frac{g_{i}}{\sqrt{2\left(g_{a}^{2}+g_{b}^{2}\right)}}
\end{aligned}
$$

Scaling is $\mathrm{N}^{2} \mathrm{InN}$

Number of qbits still larger than what is available on current hardware. But we can simulate something simpler...

Removing $\phi \rightarrow$ ff splittings and starting from single fermion simplifies things a lot, since only one fermion throughout whole evolution process

1. No need to keep track of numbers n_{a}, n_{b}, n_{ϕ}
2. All emission probabilities equal (determined by single fermion)
3. Since only the one fermion can split, no need to track history
4. Every emission simply adds one fermion

Much simpler algorithm

There are many more things that can be done using quantum computers, and it is fun to explore possibilities

1. There are many basic operations that are know how to do on a QC

- Fourier Transform
- Measuring phase of an eigenstate
- Time evolution of a quantum mechanical system
- ...

2. In fact, it was shown how one can simulate an entire QFT on a quantum computer

- Shown for both scalars and fermions
- Works at least in principle for strongly interacting theories
- Resource requirements prohibitively expensive

> Very interesting to figure out what is possible with this completely different way to perform computations

