Double parton scattering: theory developments

M. Diehl

Deutsches Elektronen-Synchroton DESY

Parton Showers and Resummation 2019 Vienna, 12 June 2019

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
0000	00000	000	00	00	0	00

Hadron-hadron collisions

cross sect = parton distributions \times parton-level cross sect

• net transverse momentum p_T of hard-scattering products:

- p_T integrated cross sect \rightsquigarrow collinear factorisation
- $p_T \ll$ hard scale of interaction \rightsquigarrow TMD factorisation

 \rightsquigarrow resummation of p_T logarithms

particles resulting from interactions between spectator partons unobserved

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
0000	00000	000	00	00	0	00

Hadron-hadron collisions

cross sect = parton distributions \times parton-level cross sect

• net transverse momentum p_T of hard-scattering products:

- p_T integrated cross sect \rightsquigarrow collinear factorisation
- $p_T \ll$ hard scale of interaction \rightsquigarrow TMD factorisation

 \rightsquigarrow resummation of p_T logarithms

- particles resulting from interactions between spectator partons unobserved
- Spectator interactions can be soft → underlying event or hard → multiparton interactions
- here: double parton scattering with factorisation formula

cross sect = double parton distributions \times parton-level cross sections

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
0000	00000	000	00	00	0	00

Scope of this talk

- theory of double parton scattering (DPS) with scales Q_1 , Q_2 of both scatters \gg soft scale Λ referred to as "perturbative phase" in Steffen Schumann's overview talk
- \blacktriangleright includes region $Q_1 \gg Q_2 \gg \Lambda$ relevant for "underlying event" in perturbative regime
- connections to this workshop:
 - resummation of DGLAP, rapidity, and p_T logarithms
 - higher-order corrections
 - parton shower algorithms for DPS
 - handling of colour structure

Not covered

 DPS phenomenology and experimental results much activity in both areas

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

Single vs. double parton scattering (SPS vs. DPS)

 \blacktriangleright example: prod'n of two gauge bosons, transverse momenta $m{q}_1$ and $m{q}_2$

single scattering:

 $|{m q}_1|$ and $|{m q}_2|\sim$ hard scale Q $|{m q}_1+{m q}_2|\ll Q$

double scattering: both $|{\bm q}_1|$ and $|{\bm q}_2| \ll Q$

▶ for transv. momenta $\sim \Lambda \ll Q$:

$$\frac{d\sigma_{\rm SPS}}{d^2\boldsymbol{q}_1\,d^2\boldsymbol{q}_2}\sim \frac{d\sigma_{\rm DPS}}{d^2\boldsymbol{q}_1\,d^2\boldsymbol{q}_2}\sim \frac{1}{Q^4\Lambda^2}$$

but single scattering populates larger phase space :

$$\sigma_{\rm SPS} \sim {1 \over Q^2} \ \gg \ \sigma_{\rm DPS} \sim {\Lambda^2 \over Q^4}$$

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
0000	00000	000	00	00	0	00

Single vs. double parton scattering (SPS vs. DPS)

 \blacktriangleright example: prod'n of two gauge bosons, transverse momenta $m{q}_1$ and $m{q}_2$

single scattering:

$$|\boldsymbol{q}_1|$$
 and $|\boldsymbol{q}_2|\sim$ hard scale Q

$$|\boldsymbol{q}_1 + \boldsymbol{q}_2| \ll Q$$

double scattering: both $|{\pmb q}_1|$ and $|{\pmb q}_2| \ll Q$

- for small parton mom. fractions x double scattering enhanced by parton luminosity
- depending on process: enhancement or suppression from parton type (quarks vs. gluons), coupling constants, etc.

example:
$$\sigma(qq \rightarrow qq + W^-W^-) \propto \alpha_s^2$$

vs. $\sigma(d\bar{u} \rightarrow W^-) \times \sigma(d\bar{u} \rightarrow W^-) \propto \alpha_s^0$
Kulsza, Stirling 2000; Gaunt, Kom, Kulesza, Stirling 200

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

DPS cross section: collinear factorisation

$$\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2 \int d^2 \boldsymbol{y} \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

C = combinatorial factor $\hat{\sigma}_i = \text{parton-level cross sections}$ $F(x_1, x_2, y) = \text{double parton distribution (DPD)}$ y = transv. distance between partons

• can make $\hat{\sigma}_i$ differential in further variables (e.g. for jet pairs)

• can extend $\hat{\sigma}_i$ to higher orders in α_s get usual convolution integrals over x_i in $\hat{\sigma}_i$ and F

- tree-level formula from Feynman graphs and kinematic approximations Paver, Treleani 1982, 1984; Mekhfi 1985, ..., MD, Ostermeier, Schäfer 2011
- full factorisation proof for double Drell-Yan Vladimirov 2016, 2017; MD, Buffing, Gaunt, Kasemets, Nagar, Ostermeier, Plößl, Schäfer, Schönwald 2011–2018

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
0000	00000	000	00	00	0	00

DPS cross section: TMD factorisation

for measured transv. momenta

$$\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, d^2 \boldsymbol{q}_1 \, dx_2 \, d\bar{x}_2 \, d^2 \boldsymbol{q}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2$$

$$\times \int \frac{d^2 \boldsymbol{z}_1}{(2\pi)^2} \, \frac{d^2 \boldsymbol{z}_2}{(2\pi)^2} \, e^{-i(\boldsymbol{z}_1 \boldsymbol{q}_1 + \boldsymbol{z}_2 \boldsymbol{q}_2)} \int d^2 \boldsymbol{y} \, F(x_i, \boldsymbol{z}_i, \boldsymbol{y}) \, F(\bar{x}_i, \boldsymbol{z}_i, \boldsymbol{y})$$

•
$$F(x_i, \boldsymbol{z}_i, \boldsymbol{y}) = \text{double-parton TMDs}$$

 $oldsymbol{z}_i =$ Fourier conjugate to parton transverse mom. $oldsymbol{k}_i$

operator definition as for TMDs: schematically have

$$F(x_i, \boldsymbol{z}_i, \boldsymbol{y}) = \frac{\mathcal{FT}}{z_i^- \to x_i p^+} \langle p | \bar{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \bar{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$$

- to be completed by renormalisation, Wilson lines, soft factors in close analogy to single scattering
- analogous definition for collinear distributions $F(x_i, y)$
- essential for studying factorisation, scale and rapidity dependence

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

Double parton scattering: ultraviolet problems

$$\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \, \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \boldsymbol{y} \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

 \blacktriangleright for $\pmb{y} \ll 1/\Lambda\,$ can compute

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct. \otimes usual PDF

first results at NLO ($\mathcal{O}(\alpha_s^2)$): MD, Gaunt, Plößl, Schäfer 2019

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

Double parton scattering: ultraviolet problems

$$\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \, \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \boldsymbol{y} \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

• for $oldsymbol{y} \ll 1/\Lambda$ can compute

$$F(x_1, x_2, \boldsymbol{y}) \sim rac{1}{oldsymbol{y}^2}$$
 splitting fct. \otimes usual PDF

 $\int d^2 a / a^4$

gives UV divergent cross section $\propto \int d^2 y/y^4$ in fact, formula only valid for $|y| \gg 1/Q$

problem also for two-parton TMDs
 UV divergences logarithmic instead of quadratic

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

... and an identity crisis

 double counting problem between double scattering with splitting (1v1) and single scattering at high-loop level (twisted box graphs)

> MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012; Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012; Manohar, Waalewijn 2012; noted earlier by Cacciari, Salam, Sapeta 2009

how to separate DPS from SPS is a matter of definition/scheme choice intuitively: small y ~ 1/Q is SPS, large y ≫ 1/Q is DPS

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

... and an identity crisis

 double counting problem between double scattering with splitting (1v1) and single scattering at high-loop level (twisted box graphs)

> MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012; Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012; Manohar, Waalewijn 2012; noted earlier by Cacciari, Salam, Sapeta 2009

also have graphs with splitting in one proton only: "2v1"

 $\sim \int d^2 oldsymbol{y} / oldsymbol{y}^2 \, imes F_{\mathsf{int}}(x_1, x_2, oldsymbol{y})$

Blok et al 2011-13, Blok, Gunnellini 2015 Gaunt 2012

skip here for reasons of time

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	0000	000	00	00	0	00

A consistent scheme

MD, Gaunt, Schönwald 2017

• regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 \boldsymbol{y} \, \Phi^2(\nu \boldsymbol{y}) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$

- $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
- cutoff scale $\nu \sim Q$

• $F(x_1, x_2, y)$ has both splitting and 'intrinsic' contributions analogous regulator for transverse-momentum dependent DPDs

keep definition of DPDs as operator matrix elements cutoff in y does not break symmetries that haven't already been broken

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	0000	000	00	00	0	00

A consistent scheme

MD, Gaunt, Schönwald 2017

► regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 \boldsymbol{y} \ \Phi^2(\nu y) \ F(x_1, x_2, \boldsymbol{y}) \ F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$

- $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
- cutoff scale $\nu \sim Q$
- $F(x_1, x_2, y)$ has both splitting and 'intrinsic' contributions analogous regulator for transverse-momentum dependent DPDs
- full cross section: $\sigma = \sigma_{DPS} \sigma_{sub} + \sigma_{SPS}$
 - subtraction σ_{sub} to avoid double counting: = σ_{DPS} with F computed for small y in fixed order perturb. theory much simpler computation than σ_{SPS} at given order
 - σ_{SPS} defined as usual no new calculation needed

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

Subtraction formalism at work

 $\sigma = \sigma_{\rm DPS} - \sigma_{\rm sub} + \sigma_{\rm SPS}$

subtraction formalism works order by order in perturb. theory Collins, Foundations of Perturbative QCD, Chapt. 10

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	0000	000	00	00	0	00

DGLAP evolution

define DPDs as matrix elements of renormalised twist-two operators:

 $F(x_1, x_2, \boldsymbol{y}; \mu_1, \mu_2) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu_1) \mathcal{O}_2(\boldsymbol{y}; \mu_2) | p \rangle \qquad f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$ $\Rightarrow \text{ separate DGLAP evolution for partons 1 and 2:}$

$$\frac{\partial}{\partial \log \mu_i^2} F(x_i, \boldsymbol{y}; \mu_i) = P \underset{x_i}{\otimes} F \qquad \text{for } i = 1, 2$$

- ▶ DGLAP logarithm from strongly ordered region $|q_1| \ll |k| \sim |q_2| \ll Q_2$ repeats itself at higher orders (ladder graphs)
- ▶ resummed by DPD evolution in σ_{DPS} if take $\nu \sim \mu_1 \sim Q_1$, $\mu_2 \sim Q_2$ and appropriate initial conditions (\rightarrow next slide)
- ► can enhance DPS region over SPS region $|q_1| \sim |q_2| \sim Q_{1,2}$ which dominates by power counting

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	•00	00	00	0	00

A model study

▶ take DPD model with $F = F_{spl} + F_{int}$

$$F_{\rm spl}(x_1, x_2, \boldsymbol{y}; 1/y^*, 1/y^*) = F_{\rm perturb.}(y^*) \, e^{-y^2 \Lambda^2} \quad {\rm with} \quad y^* = \frac{y}{\sqrt{1 + y^2/y_{\rm max}^2}}$$

inspired by b^* of Collins, Soper, Sterman

$$F_{\mathsf{int}}(x_1, x_2, \boldsymbol{y}; \mu_0, \mu_0) = f(x_1; \mu_0) f(x_2; \mu_0) \Lambda^2 e^{-y^2 \Lambda^2} / \pi$$

description simplified, actual model slightly refined

▶ $F_{\text{perturb.}}(y)$ ensures correct perturbative behaviour at small yDGLAP logarithms built up between splitting scale $\sim 1/y^*$ and $\sim Q$

- ▶ in SPS subtraction term take instead
 F_{spl}(x₁, x₂, y; Q, Q) = F_{perturb.}(y)
 hard scattering at fixed order, no resummation here
- following plots show double parton luminosity $\mathcal{L} = \int d^2 \boldsymbol{y} \, \Phi^2(\nu y) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$

with separate contributions from 1v1, 2v1, 2v2

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

- ▶ plot L vs. rapidity Y of q₁; with q₂ central take µ_{1,2} = Q_{1,2} = M_W at √s = 14 TeV
- blue band: vary ν from $0.5 M_W \dots 2M_W$ yellow band: naive scale variation for $\sigma_{1v1} \propto \nu^2$

from $\int\limits_{b_0^2/
u^2} dy^2 \left(1/y^2\right)^2$

 $u\bar{u}$

 $\label{eq:sub-state} \begin{array}{l} \blacktriangleright \mbox{ large } \nu \mbox{ variation } \leadsto \mbox{ need } -\sigma_{\mbox{sub }(1 \nu 1)} + \sigma_{\mbox{SPS}} \\ \rightsquigarrow \mbox{ use } 1 \nu 1 \mbox{ to estimate importance of SPS at} \\ & \mbox{ high orders} \end{array}$

► large rapidity separation \rightsquigarrow very small x_1 or x_2 \rightsquigarrow region $y \gg 1/\nu$ in 1v1 is enhanced by DPD evolution

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

- ▶ plot L vs. rapidity Y of q₁; with q₂ central take µ_{1,2} = Q_{1,2} = M_W at √s = 14 TeV
- blue band: vary ν from $0.5M_W \dots 2M_W$ yellow band: naive scale variation for $\sigma_{1 \vee 1} \propto \nu^2$

from $\int\limits_{b_0^2/
u^2} dy^2 \left(1/y^2\right)^2$

gluons: prominent evolution effects at all Y

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

- ▶ plot L vs. rapidity Y of q₁; with q₂ central take µ_{1,2} = Q_{1,2} = M_W at √s = 14 TeV
- blue band: vary ν from $0.5 M_W \dots 2M_W$ yellow band: naive scale variation for $\sigma_{1v1} \propto \nu^2$

from $\int\limits_{b_0^2/
u^2} dy^2 \left(1/y^2\right)^2$

 $u \bar{d}$

•
$$u\bar{d}$$
 induced by splitting at $\mathcal{O}(\alpha_s^2)$
e.g. by $u \to ug \to ud\bar{d}$

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	00

▶ plot
$$\mathcal{L}$$
 vs. $x = x_1 = x_2 = \bar{x}_1 = \bar{x}_2$ at fixed \sqrt{s}
 $\mu_{1,2} = Q_{1,2} = x\sqrt{s}$

 \blacktriangleright DPS region enhanced for small x by evolution

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	•0	00	0	00

slide provided by J. R. Gaunt

A Monte Carlo implementation of the DGS framework

Advantages of MC parton shower implementation: exclusive final states, can implement arbitrary cuts

DGS framework implemented as dShower: C

Cabouat, Gaunt, Ostrolenk, 2019

- Select kinematics of hard processes and parton separation y according to DGS DPS formula.
- Backward evolution from hard process using homogeneous double DGLAP equations:

$$\mathrm{d}\mathcal{P}_{ij}^{\mathrm{ISR}} = \mathrm{d}\mathcal{P}_{ij} \exp\left(-\int_{Q^2}^{Q_h^2} \mathrm{d}\mathcal{P}_{ij}\right) \qquad \mathrm{d}\mathcal{P}_{ij} = \frac{\mathrm{d}Q^2}{Q^2} \left(\sum_{i'} \int_{x_1}^{1-x_2} \frac{\mathrm{d}x_1'}{x_1'} \frac{\alpha_s(p_{\perp}^2)}{2\pi} P_{i' \to i}\left(\frac{x_1}{x_1'}\right) \frac{F_{i'j}(x_1, x_2, \boldsymbol{y}, Q^2)}{F_{ij}(x_1, x_2, \boldsymbol{y}, Q^2)} + \sum_{j'} \int_{x_2}^{1-x_1} \frac{\mathrm{d}x_2'}{x_2'} \frac{\alpha_s(p_{\perp}^2)}{2\pi} P_{j' \to j}\left(\frac{x_2}{x_2'}\right) \frac{F_{ij'}(x_1, x_2, \boldsymbol{y}, Q^2)}{F_{ij}(x_1, x_2, \boldsymbol{y}, Q^2)} \right)$$
'Guided' by some DPD set

▶ 2 → 1 'mergings' in backward evolution at scale $\mu_y \sim 1/y$, with probability given by splitting DPD/total DPD.

Some discussion of mergings ('joined interactions') given already in Sjöstrand, Skands, 2004, but here y-dependence of mergings taken into account.

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	0.	00	0	00

slide provided by J. R. Gaunt

A Monte Carlo implementation of the DGS framework

First numerical investigation:

- ► same-sign WW $pp \rightarrow W^+W^+ \rightarrow e^+\nu_e \mu^+\nu_\mu$
- 3 quark flavours

DPDs from DGS paper, with modifications to very approximately take account of number & momentum sum rule constraints Gaunt, Stirling, 2010, Blc Frankfurt, Strikman, 201

Gaunt, Stirling, 2010, Blok, Dokshitzer, Frankfurt, Strikman, 2013, Ceccopieri, 2014, MD, Plößl, Schäfer, 2018

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	•0	0	00

DPS: factorisation and colour

can generalise treatment of Collins, Soper, Sterman from single to double Drell-Yan and other DPS processes

- basic steps:
 - collinear gluons → Wilson lines in DPDs
 - Glauber gluons cancel
 - soft gluons → soft factor = vevs of Wilson lines rapidity dependence → Collins-Soper eq'n (rapidity renormalisation) → Sudakov logarithms

MD, Ostermeier, Schäfer 2011; MD, Gaunt, Ostermeier, Plößl, Schäfer 2015 Vladimirov 2016, 2017; Buffing, Kasemets, MD 2017

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	0.	0	00

DPS: colour complications

DPDs have several colour combinations of partons

- colour projection operators
- singlet: $P_1^{jj',kk'} = \delta^{jj'} \delta^{kk'}/3$ as in usual PDFs

• octet:
$$P_8^{jj',kk'} = 2t_a^{jj'}t_a^{kk'}$$

- for gluons: $8_A, 8_S, 10, \overline{10}, 27$
- we use the multiplet basis \rightarrow talk Stefan Keppeler

corresponding combinations in soft factor

- soft factor \rightarrow matrix in colour space
- in collinear factorisation z₁ = z₂ = 0 for colour singlet: WW[†] = 1

 $\Rightarrow S = 1$

→ soft gluon effects cancel

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	0.	0	00

DPS: colour complications

DPDs have several colour combinations of partons

- colour projection operators
- singlet: $P_1^{jj',kk'} = \delta^{jj'} \delta^{kk'}/3$ as in usual PDFs

• octet:
$$P_8^{jj',kk'} = 2t_a^{jj'}t_a^{kk'}$$

- for gluons: $8_A, 8_S, 10, \overline{10}, 27$
- we use the multiplet basis \rightarrow talk Stefan Keppeler

corresponding combinations in soft factor

- soft factor \rightarrow matrix in colour space
- in collinear factorisation $z_1 = z_2 = 0$ for colour octet: $W t^a W^{\dagger} \neq 1$

→ Sudakov factors even in collinear factoris'n M Mekhfi 1988; A Manohar, W Waalewijn 2012

 $\Rightarrow S \neq 1$

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	•	00

Summary

- double parton scattering important in specific kinematics/for specific processes
- recent years: progress towards systematic factorisation in QCD
- ► UV problem of DPS ↔ double counting with SPS → must define distinction between DPS and SPS our scheme (DGS):
 - simple UV regulator for DPS (cutoff in distance y between partons)
 - simple subtraction term to avoid double counting
 - naturally includes DGLAP logarithms in DPS
 - at large scales Q find dominant 1v1 contributions in many cases
 → SPS required at high order in α_s before DPS becomes important
 - evolution \rightsquigarrow DPS can dominate for small x_1 and/or x_2
- ongoing work on a DPS parton shower (dShower)
- soft factor and rapidity evolution: matrix structure in colour space

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	•0

Double counting: include 2v1

MD, Gaunt, Schönwald 2017

• on slide 13 had cross section: $\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} + \sigma_{\text{SPS}}$

- full version: $\sigma = \sigma_{\text{DPS}} \sigma_{\text{sub}(1v1 + 2v1)} + \sigma_{\text{SPS}} + \sigma_{\text{tw2} \times \text{tw4}}$
 - includes twist 2 \times twist 4 contribution and double counting subtraction for 2v1 term

Introduction	What is DPS?	Some numerics	Monte Carlo	More theory	Summary	Backup
00000	00000	000	00	00	0	0.

Double counting: TMD factorisation

Buffing, MD, Kasemets 2017

left and right box can independently be collinear or hard:

→ DPS, DPS/SPS interference and SPS

get nested double counting subtractions