

#### Understanding top taggers

#### Mrinal Dasgupta PSR 2019 Vienna

Based on work with Gregory Soyez, Marco Guzzi, Jacob Rawling JHEP 1809 2018





#### Outline

- Tools and lessons from W/Z/H two-pronged substructure
- CMS top tagger and issues
- Modified top taggers and Y<sub>m</sub> splitter
- Analytics for top tagging
- Comparisons to parton showers
- Conclusions and prospects

Aim : Identify the main physics principles that govern performance using resummation and showers







- Prong finders : find N=2,3,... hard prongs. Look to exploit differences in splitting functions. Different ways of defining asymmetry variable z.
- Groomers : remove uncorrelated radiation from jets.
- Radiation constrainers e.g. jet shapes : exploit differences in radiation patterns.





### Impact of prong finders

# Impact of Gonsider two distinct types :





mMDT/SoftDrop CA declustering and recurses through jet until finds branching with  $z > \zeta_{\rm cut}$ 

**Ym-splitter** gen-kt (p=1/2) declustering and examines 1<sup>st</sup> emission only.

$$\left(\rho \frac{d\sigma}{d\rho}\right)^{\rm LO} = \frac{C_F \alpha_s}{\pi} \ln \frac{1}{\zeta_{\rm cut}} \qquad \rho = \frac{m^2}{p_T^2}$$



#### mMDT/SoftDrop vs Ym-splitter





Signal significance with gluon bkgds.



MD, Powling, Siodmok 2016

- Ym-splitter needs to be supplemented by grooming to improve signal efficiency.
- Gives important performance gains relative to other methods due to Sudakov.
- Large hadronisation ~ 40% effects help performance



# Analytics for top taggers

 Want to identify the main relevant physics effects. Start with the CMS tagger and Y-splitter (used in early ATLAS top tagger).

CMS-PAS-JME-09-001, CMS-PAS-JME-13-007 ATL-COM-PHYS-2008-001

CMS tagger descends from JH top tagger. •

Kaplan, Rehermann, Schwartz and Tweedie 2008

Both CMS tagger and Y-splitter offer ways of ٠ identifying three prongs relevant to top decays.



### CMS top tagger Primary Decomposition



- Perform a C/A de-clustering of the jet and find two prongs.
- Use condition  $p_t^{\text{prong}} > \zeta_{\text{cut}} p_t$  where  $p_t$  is jet rather than local  $p_t$



#### CMS top tagger Secondary decomposition



- same way.
- End up with 2, 3, or 4 prongs.
- Select 3 or 4 prong cases as top candidates.



#### CMS top tagger

#### **Selecting 3 prongs from 4**



CMS tagger selects three hardest objects say A,B,C.

Imposes an  $m_{min}$ condition  $\min(m_{AB}, m_{BC}, m_{CA}) > m_{min}$ 

# This method is collinear unsafe!

MANCHESTER

### CMS tagger with angular cut

Original CMS tagger suffers from collinear unsafety CMS-PAS-JME-09-001

A later version introduces an angular cut in addition to the  $\zeta_{cut}$ 

 $\Delta R_{ij} > 0.4 - Ap_T$ 

CMS-PAS-JME-13-007

with A = 0.0004 GeV<sup>-1</sup>. Cuts off collinear divergence but vanishes at 1 TeV.



#### Modified taggers

# IRC unsafe tagger may not be reliable so create modified tools



• CMS<sup>3p,mass</sup> finally selects only the larger invariant mass de-clustering. This restores collinear safety with no  $\Delta R$ 

MD, Guzzi, Rawling, Soyez



#### Modified taggers

Another method : TopSplitter

MD, Guzzi, Rawling, Soyez 2018

Take not largest angle emission but emission that "dominates prong mass" as product of declustering.



Follow hardest branch and go all the way down C/A tree to find largest  $pti\,\theta_i^2$  emission.



The Universit of Mancheste

### Y<sub>m</sub>-splitter

 Uses gen-kt (p=1/2) algorithm for declustering. Equivalent to mass ordering in soft limit.

MD, Guzzi, Rawling, Soyez 2018

• Not recursive but continue to use  $\zeta_{cut}$ 



Consider prong with larger gen-kt value as declustered if  $\zeta_{cut}$  passes.

Also needs grooming

MD, Powling, Schunk, Soyez 2016 MD, Powling, Siodmok 2015



The University of Manchester

### Analytics for QCD jets

We calculate jet mass distribution after application of taggers.

Define



Compute  $\frac{d\sigma}{d\rho}$  for fixed  $\rho_{\min}$  and related quantities.



The University of Manchester

### Analytics for QCD jets

With  $m \sim m_t$  and  $m_{min} \sim m_w$  at high  $p_t$ :

$$ho,
ho_{
m min}\ll 1$$
  $ightarrow$  Resum large logs  $L_
ho=\lnrac{1}{
ho}\gg 1$ 

Also we have no strong ordering in these masses.  $L_{
ho} \sim L_{
ho_{\min}} \gg 1$ and  $\zeta_{
m cut} \sim 0.05$   $L_{
ho,
ho_{\min}} \gg L_{\zeta}$  MANCHESTER

## Leading order calculation



Two real emissions to pass the tagger so starts with  $\mathcal{O}\left(\alpha_s^2\right)$ . For simplicity take limit  $\rho \gg \rho_{\min}$ 

$$\frac{d\sigma}{d\rho} \sim \frac{\alpha_s^2}{\rho} \ln^2 \frac{1}{\zeta_{\rm cut}} \ln \frac{\rho}{\rho_{\rm min}}$$

soft strong-ordered

Compare to QCD jet

$$\frac{\alpha_s^2}{\rho} \ln^3 \frac{1}{\rho}$$

1

Reduced background after tagging.





# Standard LO DGLAP or PS evolution

Triple collinear splitting functions



# All orders



- Beyond leading order : constraints on real emissions arise from  $\rho$  and  $\rho_{min}$  conditions.

Sudakov form factors

- Our resummation accuracy is modified LL. Resums all double logs  $\frac{1}{2} \alpha_s^n L^{2n-1}$
- Counts  $\ln \frac{1}{\rho}, \ln \frac{1}{\rho_{\min}}, \ln \frac{1}{\zeta_{cut}}, \ln \frac{\rho}{\rho_{\min}}$  all on same footing
- Also includes NLL effects from running coupling and hard collinear emissions.

#### MANCHESTER 1824

#### Results

#### General form:

$$\rho \frac{d\sigma}{d\rho} = \int d\Phi_3 \frac{\hat{P}}{s_{123}^2} \frac{\alpha_s \left(k_{t1}\right)}{2\pi} \frac{\alpha_s \left(k_{t2}\right)}{2\pi} \Theta^{\text{jet}} \Theta^{\text{tagger}} \delta\left(\rho - \frac{s_{123}}{p_t^2 R^2}\right) \times e^{-R}$$

- Prefactor computed using triple-collinear splitting functions and phase space
- Convoluted with a Sudakov form factor accounting for all leading log terms
- Running coupling and hard-collinear effects included
- Matching of Sudakov to triple-collinear phase space.
- Aims to be as accurate as triple-collinear result at LO and reproduce all leading-log terms beyond.

#### Campbell and Glover 1997, Catani and Grazzini 1998

#### Results and comparisons to PS

MANCHESTER

**Jniversity** Inchester



MD, Guzzi, Rawling, Soyez. Preliminary

- Plots reflect that resummation of  $\ln \frac{\rho}{\rho_{\min}}$  terms does matter
- Inclusion of secondary emissions important at small  $\ensuremath{\mathsf{m}_{\text{min}}}$
- Overall a good agreement with PS.

#### Tagger comparisons for QCD jets



MD, Guzzi, Rawling and Soyez, 2018

- MC and analytics agree on comparative performance
- Y<sub>m</sub> splitter best at suppressing QCD jets
- CMS and variants are basically identical for performance
- Groomed Y<sub>m</sub> splitter comparable with CMS. Differences largely due to secondary emissions.





- For W/Z/H decays impact on background key to final performance. Taggers like Y-splitter are highperformance owing to large Sudakov
- For coloured top this is not the case due to signal Sudakov suppression. Also analysed signal jets with a basic Sudakov. Groomed Y-splitter comparable to CMS and variants.



#### Conclusions

- A first analytic study of aspects of top taggers carried out.
- Shows analytic control over basic features
- Large Sudakov effects not necessarily desirable and hurt signal efficiency.
- CMS tagger become potentially unsafe at high p<sub>t.</sub> Potentially harmful for precision studies. Easy to design safe variants with no change in performance.
- Plan to nvestigate combinations with jet shape variables like  $\tau_{32}$  as next step.



#### **BACK UP MATERIAL**

#### Analytical insight



- Traditional approach : Construct taggers on simple intuitive ideas. Leave details to MC studies. Lots of freedom to create many new tools.
- Analytical approach : Worry about details. Get main physics principles. Then construct optimal tools.

MD, Fregoso, Marzani and Salam 2013



- The key differences between taggers come from the Sudakov.
- Y<sub>m</sub>-splitter has a plain jet mass double log Sudakov in  $ho_2$
- TopSplitter and safe variants of CMS have an mMDT style single-log Sudakov
- mMDT/SoftDrop grooming + Y<sub>m</sub>-splitter inherits grooming Sudakov structure. MD, Fregoso, Marzani and Salam 2013. Larkoski, Marzani, Thaler and Soyez 2014.

### Top tagging methods



Figure from talk by N.Norjoharuddin on behalf of ATLAS, Boost 2017