Resummation of Jet Rates in e^+e^- collisions

Daniel Reichelt
Preliminary work done in collaboration with Nick Baberuxki, Christian Preuss, Steffen
Schumann

June 13, 2019
Parton Showers and Resummation, Vienna

Fig. 20g Another 3-jet event projected into the event plane.

- How many jets in this picture?
- By eye: 3 jets?
- Better: It depends, on the jet algorithm (for this talk: Durham algorithm) and its resolution
- ⇒ Important to understand this relation as good as we can

- Typically studied: $2 \rightarrow 3$ resolution scale y_3
- high accuracy possible, e.g. NNLL+NNLO [Banfi, McAslan, Monni, Zanderighi 2016]
- Aim of this talk: at least NLL accuracy for higher multiplicities
 - ▶ Fits of α_s in e^+e^- collisions [Verbytskyi et. al. 2019]
 - ▶ LHC: k_T splitting scales in Z + jets measured [ATLAS Collaboration 2017], prediction could be obtained by extending this study to colored initial states
 - ► Easy to define higher multiplicity equivalent → convenient to study effects like color correlations that become more important with higher multiplicities.

- Observable Definition & Setup
- 2 Resummation
- Results
- 4 Conclusion

- Durham clustering:
 - Define

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)}{Q^2} (1 - \cos \theta_{ij})$$

between each two objects i and j in the event.

- For *n* objects, find i, j that minimize $y_{ii} := y_n$.
- Recombine *i* and *j* into one object (here: by adding their four-momenta).
- Continue until left with only 2 objects (or until y_n < y_{cut})

• In the soft limit:

$$y_{\rm n} \approx k_T/Q$$

with k_T transverse momentum to direction of closest hard leg.

- Specific to this study:
 - ▶ We want to resum soft gluons around some hard (n-1 parton) born event with well behaved fixed order description \Rightarrow require $y_{n-1} > \{0.008, 0.02, 0.08\}$
 - → different from the usual (experimental) definition
 - ▶ Results shown for LEP1 energy Q = 91.2 GeV.

- Observable Definition & Setup
- 2 Resummation
- Results
- 4 Conclusion

- Based on the CAESAR formalism [Banfi, Salam, Zanerighi 2005]
- Independent implementation within the Sherpa framework [Gerwick, Höche, Marzani, Schumann 2015]
- Write cumulative cross section as

$$\Sigma(v) = \sum_{\delta} \int d\mathcal{B}_{\delta} rac{d\sigma_{\delta}}{d\mathcal{B}_{\delta}} \exp \left[-\sum_{l} R_{l}^{\mathcal{B}_{\delta}}(v)
ight] \mathcal{S}^{\mathcal{B}_{\delta}}(v) \mathcal{F}^{\mathcal{B}_{\delta}}(v).$$

- \bullet exponent and \mathcal{F} already present in 2-jet case
- ullet numerical evaluation of ${\mathcal F}$ and computation of color correlations in ${\mathcal S}$ main challenge in going to higher multiplicities.

June 13, 2019 | D Reichelt (Göttingen University) | PSR, Vienna |

- CAESAR method (with two hard legs):
 - Parametrize observable in the presence of single emission $V(k_i) = d_l g_l(\Phi) \left(\frac{k_T}{Q}\right)^a e^{-b_l \eta_l} \rightarrow k_T/Q$
 - For suitable observables $\Rightarrow \Sigma(v) = e^{-R_{NLL}(v)} \mathcal{F}(v)$
 - Single emission integral with α_s in CMW scheme

$$\mathsf{R}_{NLL}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \left[\int_0^1 dz \, \frac{\alpha_s \left(\xi (1-z)^{\frac{2b}{a+b}} \right)}{2\pi} \frac{2 \, C_F}{1-z} \Theta \left(\ln \frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2} \right) - \frac{\alpha_s(\xi)}{\pi} \, C_F B_q \right]$$

 $\qquad \qquad \mathcal{F}\left(v\right) = \lim_{\epsilon \to 0} \lim_{\bar{v} \to 0} \mathcal{F}_{\epsilon,\bar{v}}\left(v\right),$

$$\mathcal{F}_{\epsilon,ar{v}}\left(v
ight) = e^{R_{
m NLL}^{\prime}\left(v
ight)\ln\epsilon} \sum_{m=0}^{\infty} rac{1}{m!} \left(\prod_{i=1}^{m} \int rac{d\zeta_{i}}{\zeta_{i}} \, d\xi_{i} \, rac{d\Phi}{2\pi} P(\zeta_{i},\xi_{i},\Phi)
ight) \Thetaigg(1-rac{V(k_{i}(ar{v}))}{ar{v}}igg)$$

June 13, 2019 | D Reichelt (Göttingen University) | PSR, Vienna |

- The S-function and color correlations:
- Takes the general form:

$$\mathcal{S}(t) = rac{\mathsf{Tr}\left[He^{-rac{t}{2}\Gamma^{\dagger}}ce^{-rac{t}{2}\Gamma}
ight]}{\mathsf{Tr}\left[cH
ight]}, \;\; |\mathcal{M}|^2 = \mathsf{Tr}[cH]$$

• Soft anomalous dimension Γ (up to sum over hard legs that can be absorbed into R_l 's) give by [Bonciani, Catani, Mangano, Nason 2003]

$$\Gamma = \sum_{i} \sum_{j>i} T_i T_j \log(Q_{ij}/\mu)$$

• Calculation automated for arbitrary number of legs [Gerwick, Höche, Marzani, Schumann 2015].

- Automation of color calculations:
 - **1** Pick a specific set of basis vectors t_{α} .
 - ★ Trace-basis sufficient.
 - 2 Calculate $c_{\alpha\beta} = t_{\alpha}t_{\beta}$ and its inverse.
 - \star "Basis" over-complete \to generalised inverse with the methods of [Gerwick, Höche, Marzani, Schumann 2015]
 - **3** Calculate $T_i T_i$ in this basis
 - ★ Expensive but only once necessary for given number of quarks and gluons.
 - 4 Hard matrix H from COMIX in Sherpa framework.

 Validation: Compare soft approximation to full matrix element

$$R = \frac{\operatorname{Tr}\left[H_{n}c_{n}\Gamma\right]}{\operatorname{Tr}\left[c_{n+1}H_{n+1}\right]}$$

• Take some hard configuration (non-collinear) and scale one of the momenta down $k \to \lambda_{\rm S} k$ with $\lambda_{\rm S} \to 0$.

Fixed order and Matching:

- Of course at least NLO available in principle for any multiplicity.
- ullet Focus here: resummation with non-trivial color o so far only (additive) matching to LO.
- Modify logs so resummation goes to 0 at physical endpoints

$$\ln 1/y_n \to \ln \left(1/y_n - 1/y_n^{\max} + 1\right)$$

with endpoint $y_n^{\text{max}} = 1/3$ for y_3 and $y_n^{\text{max}} = y_{n-1}$ for n > 3.

- Observable Definition & Setup
- 2 Resummation
- Results
- 4 Conclusion

- Reproduce the known result for y₃
- Comparison to Sherpa results:
 - ▶ MEPS merging with up to 5 jets at LO
 - ▶ Cutoff effects dominate at low y_3 .
 - ► Good agreement in bulk of distribution.

- Results for y_5 and y_6 with a cut on the born event $y_{n-1} > 0.008$
- ullet Note: all results normalized to inclusive (n-1)-parton cross-section with corresponding cut

- Dependence on cut on born events for y_4 .
- Take cuts to higher values → better behaved (hopefully) but not realistic for higher multiplicities.
- Varying cut in resummation mimics behaviour of shower.

- Subleading color contributions:
 - ▶ Could repeat calculation with strictly $N_c \to \infty$ while $\alpha_s/N_c = \text{const.}$
 - ▶ We usually do "better":

$$\Sigma(v) = \sum_{\delta} \int d\mathcal{B}_{\delta} \frac{d\sigma_{\delta}}{d\mathcal{B}_{\delta}} \exp \left[-\sum_{l} R_{l}^{\mathcal{B}_{\delta}}(v) \right] \mathcal{S}^{\mathcal{B}_{\delta}}(v) \mathcal{F}^{\mathcal{B}_{\delta}}(v).$$

- ightharpoonup Everything apart from S has one of the hard legs associated with it.
- Correct Casimir/anomalous dimensions simple to implement e.g. in showers (though maybe hard to analyse if correct).
- lacktriangle Use this as an in between step to quantify "non-trivial" subleading contributions \rightarrow "improved LC".

- Not really clear what to match to \rightarrow no matching and restrict range to $\ln(1/y_n) > 5$.
- Improved LC reduces difference to full color, but growing with higher n.
- Results for y_4 und y_5 .

- Observable Definition & Setup
- 2 Resummation
- Results
- 4 Conclusion

Conclusion

- ► Presented preliminary results for jet resolution scales with high multiplicities in e^+e^- annihilations, at NLL+LO accuracy including non-trivial color correlations.
- ► Calculation automated as plugin to Sherpa.
- Observed good qualitative agreement between Sherpa parton shower predictions and analytic result in peak region.
- Subleading color contributions can be large, but difference significantly reduced by simple adjustments.
- Outlook and To-Do's:
 - NLO calculation can be included.

Backup

- Color for y_3 trivial.
- $\bullet \to \mathsf{improved} \ \mathsf{LC} \ \mathsf{already} \ \mathsf{full} \ \mathsf{color} \\ \mathsf{structure}.$

