Resummation of Jet Rates in $e^{+} e^{-}$collisions

Daniel Reichelt
Preliminary work done in collaboration with Nick Baberuxki, Christian Preuss, Steffen Schumann
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

June 13, 2019
Parton Showers and Resummation, Vienna

- How many jets in this picture?
- By eye: 3 jets?
- Better: It depends, on the jet algorithm (for this talk: Durham algorithm) and its resolution
- \Rightarrow Important to understand this relation as good as we can

Fig. 20 g Another 3 -jet event projected into the event plane.

- Typically studied: $2 \rightarrow 3$ resolution scale y_{3}
- high accuracy possible, e.g. NNLL+NNLO [Banfi, McAssan, Monni, Zanderighi 2016]
- Aim of this talk: at least NLL accuracy for higher multiplicities
- Fits of α_{s} in $e^{+} e^{-}$collisions [Verbytsky et. al. 2019]
- LHC: k_{T} splitting scales in $Z+$ jets measured [ATLAS Collaboration 2017], prediction could be obtained by extending this study to colored initial states
- Easy to define higher multiplicity equivalent \rightarrow convenient to study effects like color correlations that become more important with higher multiplicities.

Outline

(1) Observable Definition \& Setup
(2) Resummation
(3) Results
4. Conclusion

- Durham clustering:
- Define

$$
y_{i j}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)}{Q^{2}}\left(1-\cos \theta_{i j}\right)
$$

between each two objects i and j in the event.

- For n objects, find i, j that minimize $y_{i j}:=y_{n}$.
- Recombine i and j into one object (here: by adding their four-momenta).
- Continue until left with only 2 objects (or until $y_{n}<y_{\text {cut }}$)
- In the soft limit:

$$
y_{\mathrm{n}} \approx k_{T} / Q
$$

with k_{T} transverse momentum to direction of closest hard leg.

- Specific to this study:
- We want to resum soft gluons around some hard ($n-1$ parton) born event with well behaved fixed order description \Rightarrow require $y_{\mathrm{n}-1}>\{0.008,0.02,0.08\}$
- \rightarrow different from the usual (experimental) definition
- Results shown for LEP1 energy $Q=91.2 \mathrm{GeV}$.

Outline

(1) Observable Definition \& Setup

(2) Resummation
(3) Results
4. Conclusion

- Based on the CAESAR formalism [Banfi, Salam, Zanerighi 2005]
- Independent implementation within the Sherpa framework [Gerwick, Höche, Marzani, Schumann 2015]
- Write cumulative cross section as

$$
\Sigma(v)=\sum_{\delta} \int d \mathcal{B}_{\delta} \frac{d \sigma_{\delta}}{d \mathcal{B}_{\delta}} \exp \left[-\sum_{l} R_{l}^{\mathcal{B}_{\delta}}(v)\right] \mathcal{S}^{\mathcal{B}_{\delta}}(v) \mathcal{F}^{\mathcal{B}_{\delta}}(v)
$$

- exponent and \mathcal{F} already present in 2-jet case
- numerical evaluation of \mathcal{F} and computation of color correlations in \mathcal{S} main challenge in going to higher multiplicities.
- CAESAR method (with two hard legs):
- Parametrize observable in the presence of single emission

$$
V\left(k_{i}\right)=d_{I} g_{l}(\Phi)\left(\frac{k_{T}}{Q}\right)^{a} e^{-b_{l} \eta_{I}} \rightarrow k_{T} / Q
$$

- For suitable observables $\Rightarrow \Sigma(v)=e^{-R_{N L L}(v)} \mathcal{F}(v)$
- Single emission integral with α_{s} in CMW scheme

$$
\mathrm{R}_{N L L}(v)=2 \int_{Q^{2} v \frac{2}{a+b}}^{Q^{2}} \frac{d \xi}{\xi}\left[\int_{0}^{1} d z \frac{\alpha_{s}\left(\xi(1-z)^{\frac{2 b}{a+b}}\right)}{2 \pi} \frac{2 C_{F}}{1-z} \Theta\left(\ln \frac{(1-z)^{\frac{2 a}{\frac{2}{+b}}}}{\xi / Q^{2}}\right)-\frac{\alpha_{s}(\xi)}{\pi} C_{F} B_{q}\right]
$$

- $\mathcal{F}(v)=\lim _{\epsilon \rightarrow 0} \lim _{\bar{v} \rightarrow 0} \mathcal{F}_{\epsilon, \bar{v}}(v)$,

$$
\mathcal{F}_{\epsilon, \bar{v}}(v)=e^{R_{\mathrm{NLL}}^{\prime}(v) \ln \epsilon} \sum_{m=0}^{\infty} \frac{1}{m!}\left(\prod_{i=1}^{m} \int \frac{d \zeta_{i}}{\zeta_{i}} d \xi_{i} \frac{d \Phi}{2 \pi} P\left(\zeta_{i}, \xi_{i}, \Phi\right)\right) \Theta\left(1-\frac{V\left(k_{i}(\bar{v})\right)}{\bar{v}}\right)
$$

- The S-function and color correlations:
- Takes the general form:

$$
\mathcal{S}(t)=\frac{\operatorname{Tr}\left[H e^{-\frac{t}{2} \Gamma \dagger} c e^{-\frac{t}{2} \Gamma}\right]}{\operatorname{Tr}[c H]},|\mathcal{M}|^{2}=\operatorname{Tr}[c H]
$$

- Soft anomalous dimension 「 (up to sum over hard legs that can be absorbed into R/'s) give by [Bonciani, Catani, Mangano, Nason 2003]

$$
\Gamma=\sum_{i} \sum_{j>i} T_{i} T_{j} \log \left(Q_{i j} / \mu\right)
$$

- Calculation automated for arbitrary number of legs [Gerwick, Höche, Marzani, Schumann 2015].
- Automation of color calculations:
(1) Pick a specific set of basis vectors t_{α}.
\star Trace-basis sufficient.
(2) Calculate $c_{\alpha \beta}=t_{\alpha} t_{\beta}$ and its inverse.
\star "Basis" over-complete \rightarrow generalised inverse with the methods of [Gerwick, Höche, Marzani, Schumann 2015]
(3) Calculate $T_{i} T_{j}$ in this basis
* Expensive but only once necessary for given number of quarks and gluons.
(9) Hard matrix H from COMIX in Sherpa framework.
- Validation: Compare soft approximation to full matrix element

$$
R=\frac{\operatorname{Tr}\left[H_{n} c_{n} \Gamma\right]}{\operatorname{Tr}\left[c_{n+1} H_{n+1}\right]}
$$

- Take some hard configuration (non-collinear) and scale one of the momenta down $k \rightarrow \lambda_{\mathrm{s}} k$ with $\lambda_{s} \rightarrow 0$.

Fixed order and Matching:

- Of course at least NLO available in principle for any multiplicity.
- Focus here: resummation with non-trivial color \rightarrow so far only (additive) matching to LO.
- Modify logs so resummation goes to 0 at physical endpoints

$$
\ln 1 / y_{n} \rightarrow \ln \left(1 / y_{n}-1 / y_{n}^{\max }+1\right)
$$

with endpoint $y_{n}^{\max }=1 / 3$ for y_{3} and $y_{n}^{\max }=y_{n-1}$ for $n>3$.

Outline

(1) Observable Definition \& Setup
(2) Resummation
(3) Results
4. Conclusion

- Reproduce the known result for y_{3}
- Comparison to Sherpa results:
- MEPS merging with up to 5 jets at LO
- Cutoff effects dominate at low y_{3}.
- Good agreement in bulk of distribution.

- Results for y_{5} and y_{6} with a cut on the born event $y_{n-1}>0.008$
- Note: all results normalized to inclusive $(n-1)$-parton cross-section with corresponding cut

- Dependence on cut on born events for y_{4}.
- Take cuts to higher values \rightarrow better behaved (hopefully) but not realistic for higher multiplicities.
- Varying cut in resummation mimics behaviour of shower.

- Subleading color contributions:
- Could repeat calculation with strictly $N_{c} \rightarrow \infty$ while $\alpha_{\mathrm{s}} / N_{c}=$ const.
- We usually do "better":

$$
\Sigma(v)=\sum_{\delta} \int d \mathcal{B}_{\delta} \frac{d \sigma_{\delta}}{d \mathcal{B}_{\delta}} \exp \left[-\sum_{l} R_{l}^{\mathcal{B}_{\delta}}(v)\right] \mathcal{S}^{\mathcal{B}_{\delta}}(v) \mathcal{F}^{\mathcal{B}_{\delta}}(v)
$$

- Everything apart from \mathcal{S} has one of the hard legs associated with it.
- Correct Casimir/anomalous dimensions simple to implement e.g. in showers (though maybe hard to analyse if correct).
- Use this as an in between step to quantify "non-trivial" subleading contributions \rightarrow "improved LC".
- Not really clear what to match to \rightarrow no matching and restrict range to $\ln \left(1 / y_{n}\right)>5$.
- Improved LC reduces difference to full color, but growing with higher n.
- Results for y_{4} und y_{5}.

Outline

(1) Observable Definition \& Setup
(2) Resummation
(3) Results

4 Conclusion

- Conclusion
- Presented preliminary results for jet resolution scales with high multiplicities in $e^{+} e^{-}$ annihilations, at NLL+LO accuracy including non-trivial color correlations.
- Calculation automated as plugin to Sherpa.
- Observed good qualitative agreement between Sherpa parton shower predictions and analytic result in peak region.
- Subleading color contributions can be large, but difference significantly reduced by simple adjustments.
- Outlook and To-Do's:
- NLO calculation can be included.

Backup

- Color for y_{3} trivial.
- \rightarrow improved LC already full color structure.

