Collinear Drop

Iain Stewart MIT

PSR Workshop
ESI, Vienna
June 13, 2019
Based On: Yang-Ting Chien \& IS (in progress) [1906.xxxxx]

Collinear Drop:

- Class of observables that do not depend on energetic collinear radiation in a jet.
perhaps
- Puts focus on soft radiation.

Motivation:

- Test treatment of perturbative soft radiation in Monte Carlo Sim.
- More sensitive to hadronization. Provide new tests for hadronization models by comparing to collinear drop data.
- Can be made sensitive or insensitive to underlying event/MPI
- Study color charge and correlations
(eg. quark vs. gluon vs. Z, connection to rest of event, ...)
- Provide a probe for jet quenching and medium effects in heavy-ion collisions

Outline

- Jet Substructure, Soft Drop grooming
- Factorization for Soft Drop Jet Mass
- Collinear Drop (CD) - exploring soft phase space in jets
- Partonic Factorization \& NLL Resummation with SCET
- Analysis of CD using MC simulations and SCET
- Conclude

Jet Substructure

- grooming jets
remove soft contamination from jets

- tagging subjets
boosted particles have collimated decay products

vs.
W/Z

VS.

- collinear drop

Soft Drop Grooming

 test for subjets:

Groomed
Clustering Tree

$$
\begin{aligned}
\frac{\min \left(p_{T i}, p_{T j}\right)}{p_{T i}+p_{T j}} & >z_{\mathrm{cut}}\left(\frac{\Delta R_{i j}}{R_{0}}\right)^{\beta} \\
z & >z_{\mathrm{cut}} \theta^{\beta}
\end{aligned}
$$

two grooming parameters
Groomed Jet
$\beta: \quad$ more grooming $\beta \stackrel{ }{\underset{=}{\rightleftharpoons}} \underset{ }{\longrightarrow}$ less grooming
$z_{\text {cut }}: \quad$ less grooming

Soft Drop Factorization

sum large logs from ratios of scales
isolates measurement from rest of event

Soft Drop Factorization

- Single scale in Collinear-Soft function
- No non global logarithms for the spectrum
- Enables NNLL, ... precision

$$
\frac{d \sigma}{d m_{J}^{2}}=\sum_{i=q, g} N_{i}(\underbrace{\Phi_{J}, z_{\mathrm{cut}}, \beta}_{\begin{array}{c}
\text { normalization, } \\
\text { contains }
\end{array}}, R, \mu) P_{i}^{\mathrm{SD}}(\underbrace{m_{J}^{2}, Q, z_{\mathrm{cut}}}_{\begin{array}{c}
\text { soft drop jet mass } \\
\text { spectrum }
\end{array}}, \beta, \mu)
$$

$$
S_{G}\left(Q z_{\mathrm{cut}}, \beta, R, \mu\right)
$$

$$
P_{i}^{\mathrm{SD}}=Q_{\mathrm{cut}}^{\frac{1}{1+\beta}} \int d k^{+} J_{i}\left(m_{J}^{2}-Q k^{+}, \mu\right) S_{C i}\left(k^{+} Q_{\mathrm{cut}}^{\frac{1}{1+\beta}}, \beta, \mu\right)
$$

Jet
function

$$
\begin{aligned}
& \frac{m_{J}^{2}}{Q^{2}} \ll z_{\text {cut }} \ll 1 \\
& Q_{\text {cut }}=Q z_{\mathrm{cut}} 2^{\beta}
\end{aligned}
$$

Soft Drop Jet Mass

Also: Kang, Liu, Lee, Ringer 2018, Baron, Marzani, Theeuwes 2018

Comparison with Measurements

ATLAS I7II.0834I

CMS 1807.05974

Nonperturbative Corrections to Soft Drop Jet Mass

 Hoang, Mantry, Pathak, Stewart 1906.xxxxxFocus on the region where the soft drop stopping subjet is perturbative: Soft drop operator expansion region(SDOE)

Consider the perturbative modes in the EFT and determine the leading nonperturbative mode in the SDOE region:

$$
\frac{Q \Lambda_{\mathrm{QCD}}}{2 m_{J}^{2}}\left(\frac{4 m_{J}^{2}}{Q^{2} z_{\mathrm{cut}}}\right)^{\frac{1}{2+\beta}} \ll 1
$$

Derive the leading power corrections to the partonic cross section:

- 3 universal hadronic parameters (indep. of zcut, beta, R, Q, and mJ)
- Perturbatively calculable Matching coefficients.
- LL resummation of matching coefficients in the coherent branching formalism
see talks by A.Pathak:

Tues. blackboard - theory
Fri. 2pm - MC analyses

$$
\begin{aligned}
\frac{d \sigma_{\kappa}^{\mathrm{had}}}{d m_{J}^{2}}= & \frac{d \hat{\sigma}_{\kappa}}{d m_{J}^{2}}-Q \Omega_{1 \kappa}^{\oplus} \frac{d}{d m_{J}^{2}}\left(C_{1}^{\kappa}\left(m_{J}^{2}, Q, \tilde{z}_{\mathrm{cut}}, \beta, R\right) \frac{d \hat{\sigma}_{\kappa}}{d m_{J}^{2}}\right) \\
& +\frac{Q\left(\Upsilon_{1,0}^{\kappa}+\beta \Upsilon_{1,1}^{\kappa}\right)}{m_{J}^{2}} C_{2}^{\kappa}\left(m_{J}^{2}, Q, \tilde{z}_{\mathrm{cut}}, \beta, R\right) \frac{d \hat{\sigma}_{\kappa}}{d m_{J}^{2}}
\end{aligned}
$$

Collinear Drop

Demand that contributions from collinear region are at least exponentially suppressed

Examples:

I) jet algorithm based eg. groom jet twice and take complement
$O_{\mathrm{CD}}=O\left[\left\{\mathrm{jet}_{\mathrm{SD}_{1}}\right\} \backslash\left\{\mathrm{jet}_{\mathrm{SD}_{2}}\right\}\right]$
$O_{\mathrm{CD}}=O_{\mathrm{SD}_{1}}-O_{\mathrm{SD}_{2}}$

CD jet mass:
$\Delta m^{2}=m_{\mathrm{SD}_{1}}^{2}-m_{\mathrm{SD}_{2}}^{2}$
(trivially generalizes to other observables)


```
(z
```

- $\quad \beta_{1}=\beta_{2}, \quad z_{\mathrm{cut} 1}<z_{\mathrm{cut} 2}$
- $\quad \beta_{1}>\beta_{2}, \quad z_{\mathrm{cut} 1}=z_{\mathrm{cut} 2}$
- $\quad \beta_{1}>\beta_{2}, \quad z_{\mathrm{cut} 1}<z_{\mathrm{cut} 2}, \ldots$

Collinear Drop

Demand that contributions from collinear region are at least exponentially suppressed

Examples:

2) jet shape based
eg. energy fraction in an angular region

for $e^{+} e^{-}$collisions: $\quad \tau_{\omega}=\sum_{i \in \text { jet }} z_{i} \omega\left(\theta_{i}, \theta_{0}\right)$,

$$
\text { where } z_{i}=\frac{E_{i}}{E_{\mathrm{jet}}}
$$

for $p p$ collisions:

$$
\tau_{\omega}=\sum_{i \in \mathrm{jet}} z_{i} \omega\left(\Delta R_{i}, \theta_{0}\right)
$$

$$
\text { where } z_{i}=\frac{p_{T i}}{p_{T}^{\text {jet }}}
$$

collinear drop: $\quad \omega\left(\theta \leq \theta_{0}, \theta_{0}\right) \simeq 0$
suppress wide angle radiation if desired: $\quad \omega\left(\theta \rightarrow R, \theta_{0}\right) \simeq 0$
(can make various choices for ω, and trivially generalizes to other observables)

Not CD: large α angularity, (1-T)-(C/6), ...
have polynomial angular suppression

Focus on first example with two Soft Drops

$$
\Delta m^{2}=m_{\mathrm{SD}_{1}}^{2}-m_{\mathrm{SD}_{2}}^{2}
$$

$$
\left(z_{\mathrm{cut} 1}, \beta_{1}\right) \quad\left(z_{\mathrm{cut} 2}, \beta_{2}\right)
$$

Choose a Region of Soft Phase Space

Choose a Region of Soft Phase Space

"pinched case" provides extra suppression for wide angle soft radiation

virtuality

$\ln \left(z^{-1}\right)$

Single emission:

$$
\Delta m^{2} \frac{d \sigma^{\left(\alpha_{s}\right)}}{d \Delta m^{2}}=\frac{\alpha_{s}(\mu) C_{i}}{\pi} \ln \left[\frac{\frac{2}{z_{\text {cut }}^{2+\beta_{2}}}}{z_{\text {cut } 1}^{2+\beta_{1}}}\left(\frac{\Delta m^{2}}{\left(p_{T} R\right)^{2}}\right)^{\frac{\beta_{2}}{2+z_{2}}-\frac{\beta_{1}}{2+\beta_{1}}}\right]
$$

double logs cancel when $\beta_{1}=\beta_{2}$
true for full resummed result ("NLL" is actually LL for this case)

$$
\begin{aligned}
& \text { virtuality }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SCET Factorization (partonic) } \\
& \ln \left(z^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{j}^{\mathrm{CD}}=Q_{\mathrm{cut1}}^{\frac{1}{1+\beta_{1}}} Q_{\mathrm{cut2} 2}^{\frac{1}{1+\beta_{2}}} \int d k_{1}^{+} d k_{2}^{+} \delta\left(\Delta m^{2}-Q k_{1}^{+}-Q k_{2}^{+}\right) \frac{S_{C j}\left(k_{1}^{+} Q_{\mathrm{cut1}}^{\frac{1}{1+\beta_{1}}}, \beta_{1}, \mu\right)}{\mathrm{CS}_{1}} \begin{array}{l}
D_{C j}\left(k_{2}^{+} Q_{\mathrm{cut2}}^{\frac{1}{1+\beta_{2}}}, \beta_{2}, \mu\right) \\
\mathrm{CS}_{2}
\end{array}
\end{aligned}
$$

Resummation

Simple to derive for fully hierarchical case:

$$
\begin{aligned}
& P_{j}^{\mathrm{CD}}=\exp \left[-\frac{2\left(2+\beta_{1}\right)}{1+\beta_{1}} C_{j} K\left(\mu_{c s 1}, \mu\right)+\frac{2\left(2+\beta_{2}\right)}{\left(1+\beta_{2}\right)} C_{j} K\left(\mu_{c s 2}, \mu\right)\right]\left[\frac{Q_{\mathrm{cut}}^{\frac{1}{1+\beta_{1}}}}{\frac{1}{\frac{1}{1+\beta_{2}}}} \frac{\mu_{c s 2}^{\frac{2+\beta_{2}}{1+\beta_{2}}}}{\mu_{\text {cut } 2}^{2+\beta_{1}}} \mu_{c s 1}^{1+\beta_{1}}\right]^{2 C_{j} \omega\left(\mu_{c s 1}, \mu\right)} \\
& \times \exp \left[\omega_{S_{C i}}\left(\mu_{c s 1}, \mu\right)+\omega_{D_{C i}}\left(\mu_{c s 2}, \mu\right)\right] \widetilde{D}_{C i}\left(\partial_{\eta}, \beta_{2}, \alpha_{s}\left(\mu_{c s 2}\right)\right) \\
& \times\left.\widetilde{S}_{C i}\left(\partial_{\eta}+\ln \frac{Q_{c \mathrm{cut1}}^{\frac{1}{1+\beta_{1}}}}{Q_{\text {cut2 }}^{\frac{1}{1+\beta_{2}}}} \frac{\mu_{c s 2}^{\frac{2+\beta_{2}}{1+\beta_{2}}}}{\frac{2+\beta_{1}}{1+\beta_{1}}}, \beta_{1}, \alpha_{s}\left(\mu_{c s 1}\right)\right) \frac{e^{-\gamma_{E} \eta}}{\Gamma(\eta)} \frac{1}{\Delta m^{2}}\left(\frac{\Delta m^{2} Q_{c u t 2}^{\frac{1}{1+\beta_{2}}}}{\mu_{c s 2}^{\frac{2+\beta_{2}}{1+\beta_{2}}} Q}\right)^{\eta}\right|_{\eta=2 C_{j} \omega\left(\mu_{c s 1}, \mu_{c s 2}\right)} \\
& N_{j}^{\mathrm{CD}}\left(\Phi_{J}, R, \tilde{z}_{\mathrm{cut} i}, \beta_{i}, \mu_{g s 1}, \mu_{g s 2}, \mu\right)=H_{j}^{\mathrm{CD}}\left(\Phi_{J}, R\right) S_{G j}\left(Q_{\mathrm{cut} 1}, \beta_{1}, \mu_{g s 1}\right) \bar{S}_{G j}\left(Q_{\mathrm{cut} 2}, \beta_{2}, \mu_{g s 2}\right) \\
& \times \exp \left[\frac{2 C_{j}}{1+\beta_{1}} K\left(\mu_{g s 1}, \mu\right)-\frac{2 C_{j}}{1+\beta_{2}} K\left(\mu_{g s 2}, \mu\right)\right] \exp \left[\omega_{S_{G i}}\left(\mu_{g s 1}, \mu\right)+\omega_{\bar{S}_{G i}}\left(\mu_{g s 2}, \mu\right)\right]
\end{aligned}
$$

Up to NLL this same formula smoothly gives the non-hierarchical cases

Only consider NLL here

Transitions \& Endpoints

Same in "pinched" case

Soft drop no longer active

$$
\frac{\Delta m^{2}}{p_{T}^{2} R^{2}} \geq z_{\text {cut1 }}
$$

Look at

$$
p p \rightarrow \text { dijet }
$$

Collinear Drop vs. Soft Drop vs. Ungroomed SCET
 Pythia 8.223

log variable:
$\left(\Delta m^{2}\right)^{1 / 2} \mathrm{GeV}$

Collinear Drop vs. Soft Drop vs. Ungroomed

Collinear Drop Spectra

SCET

Pythia

Endpoint of Evolution \& Nonperturbative region (SCET, compared to MC)

Stop SCET evolution at $\mu_{0} \sim 1 \mathrm{GeV}$ as $\Delta m^{2} \rightarrow 0$ take $\begin{aligned} & \mu_{c s 2} \rightarrow \mu_{0} \\ & \mu_{c s 1} \rightarrow \mu_{0}\end{aligned}$

CD has a non-trivial contribution in $\Delta m^{2} \simeq 0$ bin

Endpoint of Evolution \& Nonperturbative region (SCET, compared to MC)

Stop SCET evolution at $\mu_{0} \sim 1 \mathrm{GeV}$

$$
\text { as } \Delta m^{2} \rightarrow 0 \text { take } \begin{aligned}
& \mu_{c s 2} \rightarrow \mu_{0} \\
& \\
& \mu_{c s 1} \rightarrow \mu_{0}
\end{aligned}
$$

contribution in $\Delta m^{2} \simeq 0$ bin
varying the cutoff:

$$
\Sigma\left(\Delta m_{c}^{2}\right)=\int_{0}^{\Delta m_{c}^{2}} d\left(\Delta m^{2}\right) \frac{d \sigma}{d \Delta m^{2}}
$$

region more sensitive to NP effects / hadronization

Sensitivity to Hadronization \& MPI (MC)

- Interesting hadronization corrections
- Soft Drop grooming protects against large MPI effects

Quark and Gluon Components for Dijet

- Quark and Gluon peak in different regions

Comparison SCET \& partonic MC
 gluon

quark

Comparison SCET vs. MC (dijet)

Summary:

- Collinear Drop: direct probe for soft (\& collinear-soft) radiation
- Tool for MC, testing softer momentum regions in the shower and hadronization models
- Interesting observable for color correlations (quark vs. gluon, ISR)

Future:

- Improve partonic SCET predictions (NNLL+NLO)
- Universality for hadronization? (extend Soft Drop results)
- Study slices through soft phase space with other Collinear-Drop observables (eg. angularities)
- Add Herwig. Systemize the study of various features.

