Event-Dependent Jet Vetoes: New prospects for multi-lepton, LHC searches ¹ PSR 2019 - Universität Wien

Richard Ruiz

Center for Cosmology, Particle Physics, and Phenomenology (CP3) Universite Catholique de Louvain

Disclaimer

Plotted: p_T of the $(\ell_1^+\ell_2^-)$ -system in $pp \to W^+W^- + 0j \to \ell_1^+\ell_2^-\nu\overline{\nu}+0j$

- During Run I, ATLAS and CMS [1306.1126; 1507.03268] consistently disagreed with SM predictions for $pp \rightarrow WW + 0j$
- Resolved by accounting for ultra low p_T gluon emission
 - Resolved due to major work by greater PSR community!
 - ► Too many papers to cite here, but please email if not cited in papers!

(Central) Jet Vetoes

Abscence of central color flow in EW Boson Scattering \implies absence of central, high- p_T jets ("rapidity gap"²)

Basis for Central Jet Veto³:

- Reject events with any jet satisfying $p_{T}^{j}>25-30$ GeV, $|\eta^{j}|<2-3$
- Crucial to Higgs physics but not perfect...

²Dokshitzer, Khoze, Troyan ('86)

³Barger, et al, PRD ('91) + PLB ('95); Bjorken, PRD ('94) $\langle \neg \rangle$

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien

Three Imperfections

1. Central Vetoes vs Weak Boson Scattering

Rapidity gap \neq 100% jet veto survival rate

- Central region for (VV)-system \neq central region for lab-frame
- Motivation for alternative gap definitions⁴, e.g., $\eta^* = \eta^{j_3} \left(rac{\eta^{j_1} + \eta^{j_2}}{2}\right)$

Example: 2012 VBF \rightarrow $h \rightarrow \tau_{had} \tau_{\mu}$ candidate with 1 very **central** j^{VBS} !

⁴Rainwater, Szalapski, Zeppenfeld, PRD ('96)

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien

< 토 ▶ < 토 ▶ 토 | ⊑ ∽ < @ en 7 / 28

2. Tight Vetoes vs Gluon Fusion

For $pp \rightarrow h + 0j$, large uncertainty **despite** precision

In practice, ATLAS/CMS veto "analysis quality" jets

- = "hard," "central(ish)" clusters
- inclusive to activity that is soft/forward w.r.t. hard process
- restrictive veto predictions are more sensitive to missing higher order soft/forward emissions

manifests as large logs / scale unc. e.g., Banfi, et al [1203.5773,1206.4998]

$$\sigma(h+1j+X) \sim \int \frac{dPS_1 \alpha_s}{(p_f+p_g)^2(p_{f'}+p_g)^2} \sim \int \frac{\alpha_s \ d\cos\theta \ dE_g^2}{E_f E_g(1-\cos\theta') \ E_{f'} E_g(1-\cos\theta)} \\ \sim \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \sim \alpha_s(p_T^{\text{Veto}}) \log^2(m_h/p_T^{\text{Veto}})^2 \to \infty, \text{ if } (m_h/p_T^{\text{Veto}}) \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \ E_g^2} \to 0 \\ \approx \int \frac{\alpha_s \ d\theta^2 \ dE_g^2}{\theta^2 \$$

3. Standard Vetoes vs New Physics

Plotted: veto efficiency⁵ $\varepsilon = \sigma^{\text{NLO}+\text{NNLL}}(p_T^{\text{Veto}}) / \sigma_{\text{Tot.}}^{\text{NLO}}$ for $pp \to N\ell^6$

• Is a veto even useful when $p_T^{\text{Veto}} \gg 20 - 30$ GeV due to top quarks? ⁵a la automated resummation with mg5amc@nlo+scet by Becher, et al [1412.8408] ⁶Pascoli, RR, et al [1805.09335, 1812.08750], but ditto for sleptons, Tackmann, et al, [1603.03052], and SSM W'/Z', Fuks, RR [1701.05263] and the set of the set of

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien

What do we want from a jet veto?

Our cake and to eat it too!

- High signal efficiency
- e High background rejection
- Sow/less sensitivity to missing higher order corrections

Event-Based⁷ Jet Vetoes⁸:

Reenvisioning the Jet Veto⁹

⁷aka: "safe jet veto," "dynamic jet veto," or "phase space-dependent jet veto" ⁸Early literature: Bjorken (dynamic rapidity gap) [PRD ('93)]; Denner, et al (regulator trick) [0906.1656]; Companario, et al ($x = E_T / \Sigma_k E_T^k$ fraction) [1410.4840]; more recent work by DESY+NIKEF+Mainz (rapidity-dependent vetoes) ⁹Pascoli, RR, Weiland [PLB ('18), 1805.09335]

R. Ruiz - CP3, Universite Catholique de Louvain

Leptons in Vector Boson Fusion

For production of leptons in VBF/VBS: $p_T^{\ell_k}$, $S_T \sim M_{VV} \gg p_T^{j_{VBS}} \sim M_V/2$

¹⁰Inspired by CMS using the ratio $r_j^{\ell} = (p_T^{\ell}/p_T^j)$ for lepton isolation [1701:06940]. So $r_j^{\ell} = (p_T^{\ell}/p_T^j)$ for lepton isolation [1701:06940].

Leptons in Vector Boson Fusion

For production of leptons in VBF/VBS: $p_T^{\ell_k}$, $S_T \sim M_{VV} \gg p_T^{j_{VBS}} \sim M_V/2$

An idea¹⁰: on event-by-event basis, set $p_T^{\text{Veto}} = p_T^{\ell_1}$

• VBF events pass by construction.

• What about other color-singlet processes, e.g., high-mass Drell-Yan? ¹⁰Inspired by CMS using the ratio $r_j^{\ell} = (p_T^{\ell}/p_T^j)$ for lepton isolation [1701:06940].

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien

Leptons in High-Mass Drell-Yan and Gluon Fusion

For leptons in high-mass DY: $p_T^{\ell_k}$, $S_T \sim M_{V^*} \gg p_T^j \sim \text{Sudakov shoulder}$

On event-by-event basis, set $p_T^{\text{Veto}} = p_T^{\ell_1}$

- High-mass, DY- and GF-type processes pass by construction
- Since $(M_{V^*}/p_T^{
 m Veto}) \sim 1$, jet veto logarithms not inherently large
- What about background processes, e.g., top quarks?

Top Quark Background vs Event-Based Jet Vetoes

 $pp \rightarrow t\overline{t}Z \rightarrow 1\mu + 3e + 2i_b + E_T$ candidate event [1509.05276] Textbook kinematics: $-m_{ee} = 93 \text{ GeV}$ - $\not\!\!E_T = 57 \text{ GeV}$ Typically, • $p_{\tau}^{e_3} \sim \frac{M_Z}{2} \sim 45$ GeV • $p_T^{e_1} \sim \frac{m_t}{4} (1 + \frac{M_W^2}{m_t^2}) \sim 50 \,\, {
m GeV}$ • $p_T^{b_1} \sim \frac{m_t}{2} (1 - \frac{M_W^2}{m_\star^2}) \sim 60 \,\, {
m GeV}$ $p_T^{b_1} > p_T^{\ell_k} \implies$ event vetoed!

Setting $p_T^{\text{Veto}} = p_T^{\ell_1}$ can **reduce** top background **without** *b*-jet tagging!

14 / 28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Diboson and Triboson Processes

- Di- / triboson processes contain large amounts of hadronic activity
 - Significant cancelations in Born-like configurations¹¹
 - Nontrivial color flow, despite naïve, color-singlet nature

 ¹¹i.e., Radiation zeros (super interesting!) Mikaelian ('78); +Brown, et al ('78-'79);

 Zhu ('80); Brodsky, et al ('82,'83); Baur, Han, Ohnemus [PRL ('94), hep-ph/9403248]

 R. Ruiz - CP3, Universite Catholique de Louvain

 Event-Based Jet Vetoes - PSR19 Wien

 15 / 28

Irreducible Bkgs vs Event-Based Jet Vetoes

Inclusive diboson production driven by $pp \rightarrow VV'j + X$

- Manifests as large K-factor in $pp \rightarrow W^+W^-$ at NNLO [1408.5243] - $p_T^{\ell} \sim \frac{M_V}{2} + \frac{p_T^j}{2n_b} (n_b = \# \text{ bosons})$ $\implies \text{ large } p_T^{\ell} > p_T^{\ell} \text{ tail}$

16 / 28

Irreducible Bkgs vs Event-Based Jet Vetoes

Inclusive diboson production driven by $pp \rightarrow VV'j + X$

- Manifests as large K-factor in $pp \rightarrow W^+W^-$ at NNLO [1408.5243] - $p_T^{\ell} \sim \frac{M_V}{2} + \frac{p_T^j}{2n_b} (n_b = \# \text{ bosons})$ $\implies \text{ large } p_T^j > p_T^{\ell} \text{ tail}$

Jets mistagged/IDed as τ_h/e , i.e., "fake leptons," major irreducible bkg: - E.g., $pp \rightarrow W^+W^-j$ - Subleading jets more likely to be mis-IDed than leading jet

Setting $p_T^{\text{Veto}} = p_T^{\ell_1}$ can **reduce** irreducible backgrounds

< ≣ ▶ < ≣ ▶ Ξ| = ∽ < @ en 16 / 28

Case Study I: Heavy Neutrinos at the LHC¹²

 ¹²Pascoli, RR, Weiland [PLB ('18), 1805.09335], JHEP ('19), 1812.08750]
 E
 E
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S

Heavy Neutrinos at Hadron Colliders¹⁴

Heavy N can be produced in a variety of ways in pp collisions

 $W\gamma$ fusion dominant mechanism for TeV-scale heavy neutrinos¹³.

● Focus on inclusive 3ℓ final state:

¹³Alva, Han, RR [1411.7305]; Degrande, Mattelaer, RR, Turner [1602.06957] ¹⁴Review on ν mass models at colliders, Y. Cai, T. Li, T. Han, RR [1711.02180] = $-\infty$ α

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien

Jet vetoes tries to descriminate jet activity in signal and background. Consider $pp \rightarrow 3e/\mu + X$ at NLO+PS(LL)+anti- $k_T(R = 1)$ **Plotted**: $p_T^{j_1}$ for CC DY signal + SM Bkg

Separation according to Born color clear but more overlap for larger $m_{N_{OOO}}$

Event-based jet vetoes descriminate against hadronic and leptonic activities

Plotted:
$$r_{i_1}^{\ell_1} = p_T^{\ell_1} / p_T^{j_1}$$
 for CC DY signal + SM Bkg

Similar behavior for other ratios, e.g., S_T/H_T , $p_T^{\ell_k}/H_T$

• Not universal, e.g. degenerate mass limit in $\tilde{\mu} \rightarrow \mu \tilde{\chi}^0$ [1901.09937]

Static jet vetoes \implies poor signal efficiency for high-mass BSM

• Setting $p_T^{\text{Veto}} = p_T^{\ell_1}$ can alleviate this

Plotted: veto efficiency $\varepsilon(p_T^j < p_T^{\text{Veto}}) = \sigma_{\text{Fid. Cuts+Veto}}^{\text{NLO+PS}} / \sigma_{\text{Fid. Cuts}}^{\text{NLO+PS}}$

Plot: LHC 14 sensitivity to active-sterile neutrino mixing (coupling²) vs heavy *N* mass (m_N) , in search for $pp \rightarrow \mu^{\pm} e^{\mp} \ell_X + X$ $(\ell_X = e, \mu, \tau_h)^{15}$

Improved sensitivity up to $10 - 11 \times$ with $\mathcal{L} = 3 \text{ ab}^{-1}$.

¹⁵See [1812.08750] for various lepton flavor permutationspuncertainty plots, etc = ∽ < ~

Case Study II:

sleptons and generalizing event-based jet veto definitions¹⁶

 ¹⁶Fuks, Nordstrom, RR, Williamson [1901.09937]
 □ ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B ► (B − (B − (B − (B − (B

Leptons vs Hadrons Redux

Consider the signature $pp \rightarrow \mu^+\mu^- + X$ at NLO+PS(LL) • Generator cuts $+ p_T^{\ell} > 15$ GeV $+ |\eta^{\ell}| < 2.4 + \text{anti-}k_T(R = 1)$

Plotted:
$$r_{j_1}^{\ell_1} = p_T^{\ell_1} / p_T^{j_1}$$

Poorer S/B separation than heavy neutrino case, $esp_{\mathcal{F}}$ for $m_{\tilde{\mu}} \sim m_{\tilde{\chi}^{\pm}} \sim \infty$ Ruiz - CP3, Universite Catholique de Louvain Event-Based Jet Vetoes - PSRI9 Wien 24 / 28

Plotted:
$$r_{H_T}^{\ell_2} = p_T^{\ell_2}/H_T$$
, $H_T = \sum_{k \in \{\text{clusters}\}} E_T^k$

Turns out $p_T^{\text{Veto}} = p_T^{\ell_1}$ is not best ratio :) Nevertheless, separation between $t\overline{t}$ from $V_{\Box}^{(*)}V_{\overline{d}}^{(*)}$ is clear :)

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien

As a benchmark, we considered CMS's Run II search [1806.05264]

- Changes: relaxed leading $p_T^{\ell_1}$ cut and swapped out $p_T^{
 m Veto}=25~{
 m GeV}$
- + FxFx1j merging, MPI/UE tuning

Plot: Sensitivity change using $H_T^{\text{Veto}} = p_T^{\ell_2}$ in $(m_{\tilde{\chi}}, m_{\tilde{\mu}})$ -space

What do we want from a jet veto?

Our cake and to eat it too!

A class of jet vetoes has been investigated for high-mass, multi- ℓ searches, one based on comparing lepton vs hadronic activities, e.g., $p_T^{Veto} = S_T$

- 💶 High signal efficiency 🗸
 - New scheme reveals > 90 95% signal acceptance with little-to-no dependence on mass scales [1805.09335]
- 🛽 High background rejection 🗸
 - Redesigned analysis gives better reduction of background
- ${f 0}$ Low/less sensitivity to missing higher order corrections \checkmark
 - Substantial reduction in QCD theory uncertainty
 - \implies less need for high-precision resummation [1812.08750]
- Universality X
 - ► Collider signature and param space dependence [1901.09937]
- Analytical Control X
 - Resummation beyond parton shower-precision less clear

27 / 28

ELE DOO

Thank you.

Backup I: The Monte Carlo Campaign

Jet vetoes are nonstandard selection cuts and make MC generation tricky

- **Need**: reliable description of *leading* jet at all p_T for signal (color-singlet) and background
- Need: "jets" (resummation/parton shower + jet definition)
 ⇒ cannot apply veto at same time as other cuts
- Need: inclusive samples since bkgs include ℓ^{\pm} outside fid. volume

Moto: "We start at NLO"

- **Event Generation**: HeavyN@NLO UFO ¹⁷ + MadGraph5_aMC@NLO
 - Bare-bones, gen-level cuts on leptons + MadSpin for decay
- Shower: Pythia8.2 (w/ QED shower + recoil + Monash* Tune+had.)
- Solution Particle-level clustering:¹⁸ MadAnalysis5 + FastJet(R = 1, anti- k_T)
- Smearing + fiducial cuts / offline analysis: private ROOT code
- Only at this point can veto be applied

R. Ruiz - CP3, Universite Catholique de Louvain

Event-Based Jet Vetoes - PSR19 Wien