IoP Half Day Meeting: Opportunities in nuclear physics with recoil separators at HIE-ISOLDE

Research plans at HIE-ISOLDE for a future recoil separator

HIE-ISOLDE

International Nuclear Physics Conference 2010 (INPC2010) Journal of Physics: Conference Series **312** (2011) 052010 IOP Publishing doi:10.1088/1742-6596/312/5/052010

The HIE-ISOLDE Project

Alexander Herlert and Yacine Kadi

CERN, 1211 Geneva 23, Switzerland

E-mail: alexander.herlert@cern.ch

Figure 5. Isotopes requested by ISOLDE users for HIE-ISOLDE

The need of recoil separators at HIE-ISOLDE: the HIFI Project

March 10-11, 2011 | Spectrometer at HIE-ISOLDE, Workshop, Lund (Sweden) Coordinators:

Olof Tengblad, Wilton Catford, Joakim Cederkäll

Profit for proposals ~ 40%

• MINIBALL, SEC, ISS (fringe fields)

Other set-ups

- GASPARD
- ACTAR

Physics cases

- Direct reactions studies
- Transfer reactions
- Coulomb excitation
- Deep inelastic reactions
- Fusion-evaporation reactions
- Astrophysics

Approved HIE-ISOLDE experiments that could profit from a Recoil Separator (2018)

IS591 P377 ¹⁸N: a challenge to the shell model and a part of the to rprocess element production in Type II supernovae (¹⁷N(d,p)¹⁸N). Matta, A / Catford, W.

IS606 P440 Studies of unbound states in isotopes at the N = 8 shell closure [$^{11}Be(t,p)^{13}Be$]. Tengblad O. / Mücher, D.

IS587 P398 Characterising excited states in and around the semi-magic nucleus ⁶⁸Ni using **Coulomb excitation** and one-neutron transfer. Gaffney, L./Flavigny, F./Zielinska, M./Kolos, K.

IS566 P370 Probing intruder configurations in ^{186,188}Pb using **Coulomb** excitation. Pakarinen, J.

IS562 P362 Transfer Reactions and Multiple Coulomb Excitation in the ¹⁰⁰Sn Region. Cederkäll, J.

IS561 P361 Transfer reactions at the neutron dripline with triton target. Riisager, K. / Mücher, D.

IS556 P352 Spectroscopy of low-lying single-particle states in ⁸¹Zn populated in the ⁸⁰Zn(d,p) reaction. Orlandi, R. / Raabe, R.

IS554 P350 Search for higher excited states of ⁸Be* to study the cosmological ⁷Li problem ⁷Be(d,p),(d,d). Gupta, D.

IS553 P348 Determination of the B(E3,0+->3-) strength in the in the octupole correlated nuclei ^{142,144}Ba using **Coulomb excitation**. Scheck, M. / Joss, D.

IS551 P345 Coulomb excitation of doubly magic 132Sn with MINIBALL at HIE-ISOLDE. Reiter, P.

IS549 P343 Coulomb Excitation of Neutron-rich ^{134;136}Sn isotopes. Kröll, T. / Simpson, G.

IS548 P342 Evolution of quadrupole and octupole collectivity north-east of ¹³²Sn: the even Te and Xe isotopes. Kröll, T. / Simpson, G.

IS547 P340 Coulomb excitation of the two proton-hole nucleus ²⁰⁶Hg. Podolyak, Z.

IS555 P351 Study of shell evolution in the Ni isotopes via one-neutron **transfer reaction** in ⁷⁰Ni Valiente Dobon, J. / Orlandi, R. / Mengoni, D.

5 Transfer (35%), 7 Coulex (50%), 2 Astrophysics (15%)

Courtesy of Olof Tengblad

Astrophysics: Direct measurements of (p, γ) cross sections

D. W. Bardayan, et al. European Physical Journal A, 2009.

HRIBF (Oak Ridge)

Pairing interaction: Multi-neutron transfer reactions

Ismael Martel, University of Liverpool, April 29, 2019

Transfer experiments

Specifications of the recoil separator

Physics		
E [MeV/u]	0.45	10
А	7	234
A/Q	2.5	4.5
P [MeV/c]	1	30
Βρ [Tm]	0.25	2.16

Timing

Slow extraction from EBIS useful for TOF Linac f = 101.28 MHz \rightarrow buncher down to ~ 10 MHz.

Multi-harmonic buncher (M. Fraiser et al. LINAC2014, THPP030)

Intensity

10⁵/s for heavy beams, but 10⁹/s instantaneous rate. \rightarrow debuncher

Size of the HIE-ISOLDE hall

<u>Separator</u>

- Rejection: ~10⁻¹²
- 100 % transport efficiency
- Mass resolution > 1/300
- Large acceptance ~ 100 mrad
- Gas-filled mode

Focal plane detector

- Position sensitivity ~ 1 mrad (scattering angle)
- Particle identification (A, Z)
- Eloss, Time of Flight, Pulse shape
- Time resolution ~ ns
- Energy resolution < 100 keV
- 100% efficiency

Simulations (HiFi) EMMA, MARA, PRISMA

- ⁹Li(d,n)¹⁰Be
- ²²Mg(d,n)²³Al
- ⁶⁸Ni(d,n)⁶⁹Ni
- ¹³²Sn(d,p)¹³³Sn
- ¹⁸⁴Hg(³He,n)¹⁸⁶Pb

Traditional system based on warm magnets

- Simple and experienced.
- Little space available but could fit.

- ToF space limitations.
- Not easy to move from one line to the other.

Layout for MINIBALL

Ismael Martel, University of Liverpool, April 29, 2019

Courtesy of J. Cederkall

Proposal for a design study using SC elements

- Explore new design concept using SC coils and RF cavities.
- Produce a compact, efficient and high-selectivity recoil separator.
- Design study including beam dynamics, mechanics, size, weight, efficiency, selectivity, construction and running costs.

Example – Combined function magnets

"Design of a superconducting Gantry cryostat" C. Bontoiu, et al., IPAC2015, doi:10.18429/JACoW-IPAC2015-WEPMN051

- Design study of a SC Gantry for protontherapy
- Protons of <u>175 MeV ± 20%</u> (large acceptance); R= 2.5 m
- Bmax = 2.195 T
- Dipoles $B\rho = 5.47$ Tm
- Quads gradient = 90 T/m
- Small magnets Length x Diameter ~ 20 cm x 15 cm
- 36 magnets, FFAG

Example- Classical design concept

Reduction in size of dipoles and quadrupoles ~ factor 5.

Example – Ring concept

SC recoil separator FFGA lattice design – Zero order

J. Resta, V. Rodin, C. Welsch – Cockcroft Institute (UK) & U. Liverpool

BMAD model

G4beamline "toy" model Scaling the EM fields of multifun

Example for ²³⁴Ra @ 10 MeV/u Rigidity $B\rho = 1.2$ T m Ring circumference: 6 m FFAG 20 magnets

Dipolar magnetic field B=1.9 T Bending angle $\vartheta=0.3$ rad Integrated quadrupolar strength *KL=*1.0 m⁻¹ Scaling the EM fields of multifunction magnets designed in the context of a superconducting Gantry cryostat [C. Bontoiu, et al., IPAC2015, doi:10.18429/JACoW-IPAC2015-WEPMN051]

- Closed and stable orbit for a 234Ra beam at 10 MeV/u.
- Still need to fully characterise the optics and study the beam dynamics of both the main beam and the reaction products.
- The work is ongoing.

Summary

- Existing physics programs would benefit from a Recoil Separator (Fragment Identifier -HiFi).
- Specific physics program could be developed
- Design study using SC coils and RF cavities to produce a compact, efficient instrument.
- Different options: warm magnets and RF cavities in ring and classical configurations.
- ISCC support for launching a new design study based SC magnets and RF cavities.
- First beam dynamics calculations started.
- Studentship U. Liverpool CERN advertised.
- Future proposal for funding to EU by international collaboration.

HIE-ISOLDE Recoil Separator (HiFi) White Book

Spectrometer design for HIE-ISOLDE

EMMA@TRIUMF

B. Davids, C.N. Davids / Nuclear Instruments and Methods in Physics Research A 544 (2005) 565-576

• Combined with gamma-detectors

PRISMA@LNL

MARA @ JYFL

Courtesy of J. Cederkall

Recoil Separators

• Separate forward focussed reactions products ($\theta \sim 0^{\circ}$) from primary beam.

• Separate the reaction reaction products at selected angles (e.g. $\theta \sim$ grazing angle).

Principal elements

- Target and reaction chamber
- Injection and extraction system
- Separator
- Focal plane detector

Experiments

- Stand alone
- In coincidence with other systems

Advantages

- Simple experiments
- High efficiencies

Disadvantages

- Cost
- Size

Shell evolution: Study of ²⁵Ne using ²⁴Ne(d, $p\gamma$)²⁵Ne

W.N. Catford et al., Eur. Phys. J. A25, Suppl. 1, 245 (2005).

Ismael Martel, University of Liverpool, April 29, 2019 (90 degrees)

SC recoil separator FFGA lattice design – Zero order

J. Resta, V. Rodin, C. Welsch – Cockcroft Institute (UK) & U. Liverpool

Twiss parameters

Alternating sequence of focusing and defocusing <u>quadrupolar</u> components