

Recoil spectrometers for transfer reactions ?

Marlène Assié IPN Orsay, assie@ipno.in2p3.fr

Transfer reactions in inverse kinematics

Transfer reactions in inverse kinematics

Characteristics of transfer reactions with light targets

- Device at 0 degree -->Small scattering angles around 0
- Performances :
 - . Event-by-event PID: Physical separation of reaction products of interest
 - from the **beam / isobaric beam contaminants** and others
 - from fusion-evaporation reactions with target (CH₂, CD₂, X+³H, X+⁴He, X+¹⁶O, ...)
 - . Large acceptance
 - . Excellent angular resolution to allow kinematic reconstruction (and Doppler correction)
 - . A/Z resolution : ?
 - . Timing : useful for particle identification in some cases ...

Normalisation

- Beam composition (if not pure)
- Integral measurement sufficient but beam tracking devices useful (BTD limited to 10⁵pps)

MUGAST commissioning : ¹⁶O(d,p)¹⁷O @ 6 MeV

An extremely complete set-up for transfer reactions measurement

MUGAST commissioning : ¹⁶O(d,p)¹⁷O @ 6 MeV

Beam intensity : ~4 10⁴ pps **No BTDs** due to large straggling effect

MUGAST commissioning : ¹⁶O(d,p)¹⁷O

Energy resolution :

- from fit of 2 peaks : ~500 keV
- from simulation with CD₂ Img/cm²: 500 keV

MUGAST commissioning : ¹⁶O(d,p)¹⁷O

Energy resolution :

- from fit of 2 peaks : ~500 keV
- from simulation with $CD_2 Img/cm^2$: 500 keV

VAMOS-MUGAST relative efficiency : ~60%

- a lot of pile-up event
- large effect of straggling in the DC at the entrance of VAMOS

MUGAST commissioning : ¹⁶O(d,p)¹⁷O --> triple coincidences

Relative efficiency MUGAST-AGATA:

- before add-back : 5.5%
- after add-back : ~8%

(d,p) reactions favorable :

- Protons in backward direction :)
- No identification needed
- Small background

Other transfer reactions : difficulties with $(d,t) \& (d,^{3}He)$

Background free measurement needed through exclusive identification of products

Other transfer reactions : difficulties with $(d,t) \& (d,^{3}He)$

Background free measurement needed through exclusive identification of products

Beam contamination issue : the case of ⁵⁶Ni beam at Spiral1

1) Contamination from Co:

Possible solutions (under study):

→ Go to fully stripped ⁵⁶Ni²⁸⁺ using a stripper foil after CIME

Primary beam	Target	⁵⁶ Ni (12+) pps	⁵⁶ Co(11+) pps
58Ni	12C	7.3E+04	1.6E+06
58Ni	Nb	4.0E+04	1.7E+06

Charged states from the beam : the case of ⁵⁶Ni beam at Spiral1

1) Contamination from Co:

Possible solutions (under study):

→ Go to fully stripped ⁵⁶Ni²⁸⁺ using a stripper foil after CIME

Primary beam	Target	⁵⁶ Ni (12+) pps	⁵⁶ Co(11+) pps
58Ni	12C	7.3E+04	1.6E+06
58Ni	Nb	4.0E+04	1.7E+06

2) Charges states in VAMOS after secondary target (preliminary)

Even if fully stripped ⁵⁶Ni²⁸⁺ onto a CD_2 target at 12 MeV/nucleon:

Charge state	% 0.5 mg/cm²	% 1 mg/cm²	% 2 mg/cm²
28+	17	16	15
27+	42	41	39
26+	31	32	34
25+	8	9	11

14

Courtesy of F. Flavigny

Charged states from the beam : the case of ⁵⁶Ni beam at Spiral1

1) Contamination from Co:

Possible solutions (under study):

→ Go to fully stripped ⁵⁶Ni²⁸⁺ using a stripper foil after CIME

Primary beam	Target	⁵⁶ Ni (12+) pps	⁵⁶ Co(11+) pps
58Ni	12C	7.3E+04	1.6E+06
58Ni	Nb	4.0E+04	1.7E+06

2) Charges states in VAMOS after secondary target (preliminary)

15

Courtesy of F. Flavigny

Other ideas : trifoil plastic instead of spectrometer

²⁵Na(d,p)²⁶Na @ 10 A MeV
ZERO DEGREE = SPECTROMETER
full identification

RESULTS from TIARA/MUST2 Nov2007

Perspex light guide Three photomultipliers

10um BC400 plastic 40 x40 mm² 80% efficiency

Adapted from W. Catford

ZERO DEGREE = SCINTILLATOR : tagging

Other ideas : trifoil plastic instead of spectrometer

ZERO DEGREE = SCINTILLATOR : tagging

G.L. Wilson et al Journal of Physics: Conference Series 381 (2012) 012097

Characteristics of transfer reactions with light targets

- **Typical intensities:** > few 10⁴/s up to 10⁶⁻⁷pps. @ ISOLDE instantaneous rate 10⁹ pps !!
- Device at 0 degree -->Small scattering angles around 0° --> beam stopping and beam spot size important !
 --> active finger(s) ? -->diamond detectors ? --> straggling effects !
- Performances :
 - . Event-by-event PID: Physical separation of reaction products of interest
 - from the beam / isobaric beam contaminants and others : charge states / contaminants / straggling !
 - from fusion-evaporation reactions with target (CH₂, CD₂, X+³H, X+⁴He, X+¹⁶O, ...)
 - . Large acceptance
 - . Excellent angular resolution to allow kinematic reconstruction (and Doppler correction in AGATA case)
 - . A/Z resolution :
 - $A/\Delta A > 240$ /. $Z/\Delta Z > 90$
 - \pm a few mass and nuclear charge units should pass
 - . Timing : useful for particle identification in some cases ...
 - @ISOLDE : slow extraction from EBIS usually required : which reference signal ?
- Normalisation
 - Beam composition (if not pure)
 - Integral measurement sufficient but beam tracking devices useful (BTD limited to 10⁵pps)

Where can we found a compromise ?

•**Typical intensities:** > few 10⁴/s up to 10⁶⁻⁷pps. @ ISOLDE instantaneous rate 10⁹ pps !!

- Device at 0 degree -->Small scattering angles around 0°
 --> beam stopping & beam spot size very important !
 --> active finger(s) ?
 --> diamond detectors ?
 --> straggling effects !
- Performances :

. Event-by-event PID: Physical separation of reaction products of interest Limited physical separation ?

- from the beam / isobaric beam contaminants and others : charge states / contaminants / straggling !

- from fusion-evaporation reactions with target (CH₂, CD₂, X+³H, X+⁴He, X+¹⁶O, ...)

. Large acceptance

. Excellent angular resolution to allow kinematic reconstruction Limited angular acceptance ? Resolution ?

. A/Z resolution :

- $A/\Delta A > 240$ / $Z/\Delta Z > 90$ Limited mass identification ?

- \pm a few mass and nuclear charge units should pass
- . Timing : useful for particle identification in some cases ...

@ISOLDE : slow extraction from EBIS usually required : which reference signal ?

- Normalisation
 - Beam composition (if not pure)
 - Integral measurement sufficient but beam tracking devices useful (BTD limited to 10⁵pps)