Seeing the dark matter halo through Gaia's eyes

with machine learning

Marat Freytsis

Tel Aviv/IAS

Korea Meeting on Particle Physics May 3, 2019

Gaia and dark matter

- Gaia: the largest 5D/6D catalog of local astronomical objects ever
- Can it teach us about the dark matter halo of the Milky Way?
- Why improve our halo models?
 - ► Astronomers: Learn galactic formation histories
 - ► Particle physicists: Halo feeds into detection rates
- Older stars act as tracers for (some) dark matter
- The challenge: identifying old stars with Gaia only

Plan

- · Gaia and DM
- Halo models and stellar tracers
 - ► Toy models & merger histories
 - ► Finding visible tracers of DM
- Machine learning with Gaia through FIRE
 - ► General methods
 - Validating performance
- Performance in simulation and prospects

Toy models of Milky Way visible galaxy

Central bulge + disk

us: $\sim 8 \, kpc$ out

 $M_{
m stellar} pprox 5 imes 10^{10} M_{\odot}$

 $z_{
m disk} pprox 0.6 \,
m kpc$ $R_{
m disk} pprox 15 \,
m kpc$ $R_{
m bulge} pprox 4 \,
m kpc$

Toy models of the Milky Way

rotation curves (
$$v_c(r) = \sqrt{rac{GM}{r}}$$
) \Longrightarrow visible galaxy inside DM halo

$$egin{aligned} R_{
m halo} \sim 100 \, {
m kpc}, M_{
m halo} \sim 10^{12} M_{\odot} \ {
m flat} \, v_c(r) &\Longrightarrow M(r) \propto r \
ho(r) \propto r^{-2} \ v_c(R_{
m halo}) \sim 200 \, {
m km/sec} \end{aligned}$$

- collisionless
- nonrelativistic
- self-gravitating
- isotropic/isothermal

Toy models of the Milky Way

rotation curves (
$$v_c(r) = \sqrt{rac{GM}{r}}$$
) \Longrightarrow visible galaxy inside DM halo

$$egin{aligned} R_{
m halo} \sim 100 \, {
m kpc}, M_{
m halo} \sim 10^{12} M_{\odot} \ {
m flat} \ v_c(r) &\Longrightarrow M(r) \propto r \
ho(r) \propto r^{-2} \ v_c(R_{
m halo}) \sim 200 \, {
m km/\,sec} \end{aligned}$$

- collisionless
- nonrelativistic
- self-gravitating
- isotropic/isothermal

Toy models of the Milky Way

rotation curves
$$(v_c(r) = \sqrt{\frac{GM}{r}}) \Longrightarrow$$
 visible galaxy inside DM halo

$$egin{aligned} R_{
m halo} \sim 100 \, {
m kpc}, M_{
m halo} \sim 10^{12} M_{\odot} \ {
m flat} \, v_c(r) &\Longrightarrow M(r) \propto r \
ho(r) \propto r^{-2} \ v_c(R_{
m halo}) \sim 200 \, {
m km/\,sec} \end{aligned}$$

- collisionless
- nonrelativistic
- self-gravitating
- isotropic/isothermal

Hierarchical merger model

Where did all this come from?

- 1. Density fluctuations after big bang lead to protogalactic fragments of $O(10^6-10^8 M_{\odot})$
- 2. Fragments evolve in isolation creating stars/globular clusters
- 3. Collisions and tidal disruptions lead to distribution of halo (stars and DM)
- 4. Gas in the mergers interacts and collapses to disk
- 5. Young and metal rich stars produced in the disk

The last major merger occurred $\sim 10\,\mathrm{Gyr}$ ago Minor mergers still happening

Hierarchical merger model

Where did all this come from?

- 1. Density fluctuations after big bang lead to protogalactic fragments of $O(10^6-10^8 M_{\odot})$
- 2. Fragments evolve in isolation creating stars/globular clusters
- 3. Collisions and tidal disruptions lead to distribution of halo (stars and DM)
- 4. Gas in the mergers interacts and collapses to disk
- 5. Young and metal rich stars produced in the disk

The last major merger occurred $\sim 10\,\mathrm{Gyr}$ ago Minor mergers still happening

Old stars as tracers

Local halo imprinted with merger history

Stars and DM interact almost only through gravity

To find DM, find stars from early mergers

Tracing DM

How to detect the oldest stars?

Early merger \longrightarrow old star \longrightarrow low metallicity

$$[\mathrm{Fe}/\mathrm{H}] = \log_{10}\left(rac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}
ight) - \log_{10}\left(rac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}
ight)_{\odot} < C$$

Also helps not to look directly in the disk

$$|z|>z_{
m cut}$$

Does this work?

Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same velocity distributions!

Tracing DM results in simulation

Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same density profile!

Can stellar tracers of virialized DM be isolated in practice?

Tracing DM results in simulation

Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same density profile!

Can stellar tracers of virialized DM be isolated in practice?

Catalogs of real data

Phase space

- Gaia DR1 (2-D location for 1.1 billion stars)
 - Crossmatched with Hipparcos Tycho-2 catalog (2 million stars)
- Gaia DR2 (5-D PS for 1.3 billion stars)

Spectroscopy + v_r

- RAdial Velocity Experiment
- Sloan Digital Sky Survey

RAVE-TGAS (255,922 stars)

Gaia-SDSS (193,162 stars)

Catalogs of real data

Phase space

- Gaia DR1 (2-D location for 1.1 billion stars)
 - ► Crossmatched with Hipparcos Tycho-2 catalog (2 million stars)
- Gaia DR2 (5-D PS for 1.3 billion stars)

Spectroscopy + v_r

- RAdial Velocity Experiment
- Sloan Digital Sky Survey

RAVE-TGAS (255,922 stars)

Gaia-SDSS (193,162 stars)

Catalogs of real data

Phase space

- Gaia DR1 (2-D location for 1.1 billion stars)
 - Crossmatched with Hipparcos Tycho-2 catalog (2 million stars)
- Gaia DR2 (5-D PS for 1.3 billion stars)

Spectroscopy + v_r

- RAdial Velocity Experiment
- Sloan Digital Sky Survey

RAVE-TGAS (255,922 stars)

Gaia-SDSS (193,162 stars)

...and real-world results

virialized DM velocities smaller than standard halo model \Longrightarrow implications for DM direct detection

But accuracy limited by cross-correlating data

Plan

- · Gaia and DM
- Halo models and stellar tracers
 - ► Toy models & merger histories
 - ► Finding visible tracers of DM
- Machine learning with Gaia through FIRE
 - ► General methods
 - ► Validating performance
- Performance in simulation and prospects

Letting Gaia see on its own

DR2: 5-D kinematics and 2-band spectroscopy on 1.3 billion stars

Not enough information to extract metallicity conventionally Idea: Use neural network classifier as old star distribution fitter

Gaia data format details

Stellar information provided

- Galactic longitude and latitude (ℓ, b)
- Proper motion in right ascension and declination $(\mu_{\alpha,\delta})$
- Parallax
- Blue- and red-band magnitude (G_{BPRP})

Provides 5D phase-space information (radial v missing) Complementary information to parallax in G

if neural network can learn distance—luminosity function Residual information about metallicity also in *G*?

Feed-forward NN classification

$$\ell_{\text{BCE}}(\{y_t\}, \{y_p\}) = -\sum_i \left(y_{t,i} \log y_{p,i} + (1-y_{t,i}) \log (1-y_{p,i})\right)$$

Requires event-by-event labels for (simulated) training sample

• Use FIRE simulations with labels from known history

Network and training procedure

- Train 5-layer network
 - ▶ 7 inputs à la Gaia
 - ▶ 3 hidden layers of 100 nodes each
 - star classified as accreted or not
- Label from FIRE merger history
 - Remove metallicity middleman
- 600 million stars per viewpoint
- Include measurement uncertainty by resampling each star within its errors 20 times

Crosschecks and transfer learning

- Maybe just learn particular local distribution/merger history?
 - Compare different observations
 - ► Compare different simulations
- Systematic errors in FIRE mocks?
- Compensate via transfer learning
 - ► Lower NN layers learn simple cuts
 - High-level observables in top layer
 - ► Train full network on a dataset
 - Reset *top layer only* and retrain *only that layer* on new data
 - ▶ Requires much less data in 2nd set
 - Reduce sensitivity to complex features in original training set

Plan

- · Gaia and DM
- Halo models and stellar tracers
 - ► Toy models & merger histories
 - ► Finding visible tracers of DM
- Machine learning with Gaia through FIRE
 - General methods
 - Validating performance
- Performance in simulation and prospects
 - All results preliminary!

Classifying close stars

Close stars have multiple parallax measurements

 \longrightarrow radial velocity recovered, full 6-D PS information available Photometric data help when only reduced PS information exists

Moving farther out

At best only 5-D information at larger differences 5-D information or photometric data critical to best performance

A closer look at photometric data

At smaller distances, training data doesn't cover full HR diagram Luminocity-distance relations not fully learned

must be careful training set goes out as far as real data with photometry

Comparing viewpoints

Testing on LSR1

training on multiple viewpoints ⇒ improved generalization

Comparing viewpoints

Testing on LSR2

details depend on local kinematics

seemingly more stable generalization with $G_{\rm BP,RP}$

Trying a new galaxy

Different merger history indicated by v_{arphi} distribution

Transfer learning results

More realistic scenario: labels after transfer from cuts, not truth

Use |z| and [Fe/H] to set labels in m12f

Most effective to recalibrate $G_{\rm BP,RP}$ and large-distance kinematics

Transfer learning results

Large set

With big training set, transfer less necessary

 10^{-5}

10⁻⁶ 10⁻⁶

Transfer first: 0.907

Transfer last: 0.910

False positive rate

10-4

Transfer first and last: 0.906

10-2

10-

Transfer first: 0.946

Transfer last: 0.958

False positive rate

— Transfer first and last: 0.942

10-2

Preliminary look at Gaia DR2

Preliminary!

Have created an (expected) 95% pure accreted Gaia DR2 dataset

• Contains 21304 stars with full 6D information

Gaia-Enceladus clearly visible New structure (Nyx) visible without rotational symmetry Will introduce asymmetry to local DM velocity if confirmed

Next steps

- Final validation and closure tests in FIRE Gaia mocks
- Release a public catalog of virialized old stars in Gaia dataset
- Extraction of local DM halo v distributions
 - ► Effect on DM direct detection rates
 - Characterize uncertainties in the method
- Can be say anything about unvirialized/unresolved DM?

Conclusions

- Hierarchical mergers imply old stars are efficient DM tracers
 - metallicity and kinematics serve as efficient selection criteria
 - ► Gaia has no access to metallicity; cut-based analyses insufficient
- Modern machine learning techniques allow the full resolving power of the Gaia dataset to be brought on the problem
 - Kinematic and spectral information can be as powerful
 - ► Training must be performed carefully to avoid sample bias
 - ► Transfer learning techniques help control systematics
- Validation in simulation nearly complete
 - Real data calalogs and physics analyses released soon
 - ▶ New local structures in the glaxay already located
 - ► Correlations of structures with DM affect DD interpretations
- ML gives a path to unlocking the full potential of the Gaia

Thank you!