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Gaia and dark matter

Gaia: the largest 5D/6D catalog of local astronomical objects
ever

Can it teach us about the dark matter halo of the Milky Way?

Why improve our halo models?

» Astronomers: Learn galactic formation histories
» Particle physicists: Halo feeds into detection rates

Older stars act as tracers for (some) dark matter

The challenge: identifying old stars with Gaia only
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Plan

Gaia and DM

Halo models and stellar tracers

» Toy models & merger histories
» Finding visible tracers of DM

Machine learning with Gaia through FIRE

» General methods
> Validating performance

Performance in simulation and prospects
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Toy models of Milky Way

visible galaxy

Mtetiar = 5 x ]-OloM@

Central bulge + disk zaisk ~ 0.6 kpc
Rgisk ~ 15kpe

us: ~ 8kpc out Ryuige ~ 4kpc
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Toy models of the Milky Way
DM halo

rotation curves (v.(r) = %) — visible galaxy inside DM halo
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Toy models of the Milky Way
DM halo

rotation curves (v.(r) = %) — visible galaxy inside DM halo

Rpao ~ 100 kPC, Myao ~ 1012M®
flat v.(r) = M(r) xr
p(r) oc r=2
Uc(Rhalo) ~ 200 km/ sec
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Toy models of the Milky Way
DM halo

rotation curves (v.(r) = %) — visible galaxy inside DM halo
Ry ~ 100kpe, My, ~ 1012M e collisionless
flat v.(r) = M(r) xr \ e nonrelativistic
plr) ocr™ If-gravitati
b (Rbato) ~ 200 km/ sec " oo TS
e isotropic/isothermal
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Hierarchical merger model

Where did all this come from?

1. Density fluctuations after big bang lead to protogalactic
fragments of O(10-108M,)

2. Fragments evolve in isolation creating stars/globular clusters

3. Collisions and tidal disruptions lead to distribution of halo
(stars and DM)

4. Gas in the mergers interacts and collapses to disk
5. Young and metal rich stars produced in the disk
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Hierarchical merger model

Where did all this come from?

1. Density fluctuations after big bang lead to protogalactic
fragments of O(10-108M,)

2. Fragments evolve in isolation creating stars/globular clusters

3. Collisions and tidal disruptions lead to distribution of halo
(stars and DM)

4. Gas in the mergers interacts and collapses to disk
5. Young and metal rich stars produced in the disk

The last major merger occurred ~ 10 Gyr ago
Minor mergers still happening
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Old stars as tracers

Local halo imprinted
with merger history

Stars and DM interact
almost only through
gravity

To find DM, find stars
from early mergers

Trailing tidal
. debris
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Tracing DM

How to detect the oldest stars?

Early merger — old star — low metallicity
Nr. ) (N Fe )
Fe/H] = 1o — | —lo — | <C
[Fe/H] g10 (NH 210 Ny 5

Also helps not to look directly in the disk

|2| > Zeut
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Tracing DM

results in simulation

Does this work?

1 LABAMLRARRARARAS RARAR RARRS
= Eris Galactic Velocity Distributions

= Ir - rol < 2 kpe, [zpm|<2 kpe

[a/Fe]>0.2, [Fe/H]<—1
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—— [afFe]>0.2, [Fe/H]<-3
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Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same velocity distributions!
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Tracing DM

results in simulation
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Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same density profile!
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Tracing DM

results in simulation
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Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]
Old stars and DM share the same density profile!
Can stellar tracers of virialized DM be isolated in practice?
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Catalogs of real data

Phase space Spectroscopy + v,
e Gaia DR1 (2-D location
for 1.1 billion stars)

» Crossmatched with
Hipparcos Tycho-2

catalog (2 million stars) e RAdial Velocity
e Gaia DR2 (5-D PS for 1.3 Experiment
billion stars) e Sloan Digital Sky Survey
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Catalogs of real data

Phase space Spectroscopy + v,
e Gaia DR1 (2-D location
for 1.1 billion stars)

» Crossmatched with
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catalog (2 million stars) e RAdial Velocity
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Catalogs of real data

Phase space Spectroscopy + v,
e Gaia DR1 (2-D location
for 1.1 billion stars)

» Crossmatched with
Hipparcos Tycho-2

catalog (2 million stars) e RAdial Velocity
e Gaia DR2 (5-D PS for 1.3 Experiment
billion stars) e Sloan Digital Sky Survey
RAVE-TGAS (255,922 stars) Gaia-SDSS (193,162 stars)
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...and real-world results

RAVE-TGAS Gaia-SDSS
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[arXiv:1708.03635] [arXiv:1807.02519]

virialized DM velocities smaller than standard halo model
— implications for DM direct detection

But accuracy limited by cross-correlating data
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Plan

Gaia and DM

Halo models and stellar tracers

» Toy models & merger histories
» Finding visible tracers of DM

Machine learning with Gaia through FIRE

» General methods
» Validating performance

Performance in simulation and prospects

10/ 26



Letting Gaia see on its own

DR2: 5-D kinematics and 2-band spectroscopy on 1.3 billion stars

Not enough information to extract metallicity conventionally
Idea: Use neural network classifier as old star distribution fitter
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Gaia data format details

Stellar information provided
e Galactic longitude and latitude (¢, b)
e Proper motion in right ascension and declination (y4,5)
e Parallax
¢ Blue- and red-band magnitude (Ggprp)

Provides 5D phase-space information (radial v missing)
Complementary information to parallax in G

if neural network can learn distance—luminosity function

Residual information about metallicity also in G?
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Feed-forward NN classification

Input Layer Hidden Layer Output Layer

taee({ye}, {yp}) = = D eilogypi + (1= yei) log(1 = yp,))

1
Requires event-by-event labels for (simulated) training sample
e Use FIRE simulations with labels from known history
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Network and training procedure

FIRE - m12i - LSRO

e Train 5-layer network

» 7 inputs a la Gaia 108} —— Fullset == Accreted
> 3 hidden layers of 100 nodes each
» star classified as accreted or not

e Label from FIRE merger history

» Remove metallicity middleman

Stars per bin

| —— All stars

e 600 million stars per viewpoint

Small parallax o g
100+ | error .

o Include measurement uncertainty | S et
. . . . 10 L L L y
by resampling each star within its o 1 2 3 4
Distance [kpc|

errors 20 times
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¥ [kpe

Crosschecks and transfer learning

e Maybe just learn particular local
distribution/merger history?
» Compare different observations

smoll, medium, » Compare different simulations
RS N % large sets

ob @/ e Systematic errors in FIRE mocks?
i e Compensate via transfer learning
» Lower NN layers learn simple cuts

\LsR1  Lsm2/
R »> High-level observables in top layer
B » Train full network on a dataset
e ¥ * » Reset top layer only and retrain

only that layer on new data
» Requires much less data in 2nd set
» Reduce sensitivity to complex
features in original training set
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Plan

Gaia and DM

Halo models and stellar tracers

» Toy models & merger histories
» Finding visible tracers of DM

Machine learning with Gaia through FIRE

» General methods
> Validating performance

Performance in simulation and prospects
» All results preliminary!
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Classifying close stars

10°

4D

= 4D Phot
== 4D FeH
— 5D

= 5D Phot
== 5D FeH
- 6D

=+ 6D Phot
== 6D FeH

True positive rate

10° 107 107 1072 10!
False positive rate

10°

|z| > 1.5 kpc,
[Fe/H) <15

¢ Kinematic

Metallicity

Close stars have multiple parallax measurements
— radial velocity recovered, full 6-D PS information available
Photometric data help when only reduced PS information exists
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Moving farther out

Test on Medium Set
L]

Test on Medium Set
e

False positive rate

False positive rate

10° 10° 10°
2 9 2
k s B |2 > 15 kpe,
z z =z ®  [Fe/H] <-15
2 2 2 ¢ Kinematic
10! Z 107! Z10° = Metallicity
g g g
= féwork trained with: = Network trained with: = Network trained with:
= —— 4DSmall = 4DSmallPhot = H ---- 4DSmallFeH
3} . —— 5DSmall = . 5DSmallPhot = ¢ . ~-== 5DSmallFeH
—— ADMedium ADMediumPhot ADMediumFcH
—— 5DMedium 5DMediumPhot ~ = 5DMediumFeH
102 107 = 102 = 3
10° 107 107 10° 107 107 10° 107 107

False positive rate

At best only 5-D information at larger differences
5-D information or photometric data critical to best performance
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A closer look at photometric data

Small parallax error

T 20.0

82161%11 parallax error and radial velocity

® Insitu

17.5F ®  Accreted d 17.5F

—

=

=}
T

G [Magnitude]
=
G [Magnitude]
=

10.0F 1 10.0 - 1
A 1 ar 1
R 2 1 W 2 i

Gy, — Gr, [Magnitude] G, — Gr, [Magnitude]

At smaller distances, training data doesn’t cover full HR diagram

Luminocity-distance relations not fully learned
must be careful training set goes out as far as real data with photometry
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Comparing viewpoints
Testing on LSR1

Only kinematics Kinematics and photometric

: 10°

107"

Local training: 0.989
—— Trained on LSRO0: 0.975
—— Trained on LSR2: 0.977

Trained on LSR0O
& LSR1: 0.982

Local training: 0.950
—— Trained on LSRO0: 0.938
—— Trained on LSR2: 0.935

Trained on LSR0O
& LSR2: 0.939

True positive rate
-
<
.

True positive rate

102 & . L 102 L L s
10° 1073 10t 10° 1073 10t

False positive rate False positive rate

training on multiple viewpoints
— improved generalization
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Comparing viewpoints

True positive rate

Testing on LSR2
100 Only kinematics 100 Kinematics and photometric
)
=
<
-
o
>
A
10" ¢ 1 FLtr
Q
=%
Local training: 0.958 g Local training: 0.990
Trained on LSRO: 0.934 EH —— Trained on LSRO0: 0.978
Trained on LSR1: 0.942 —— Trained on LSRI1: 0.977
Trained on LSR0O Trained on LSR0O
& LSR1: 0.941 & LSR1: 0.983
102 4 . L 102 L s
10° 1079 10! 10° 1079 10!

False positive rate

details depend on local kinematics
seemingly more stable generalization with Ggprp
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Trying a new galaxy

old galaxy

new galaxy

m12i - LSRO (Large data)
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Different merger history indicated by v, distribution
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Transfer learning results

Medium set

More realistic scenario:
labels after transfer
from cuts, not truth

Use |z| and [Fe/H] to set
labels in m12f

Most effective to
recalibrate Ggprp and
large-distance
kinematics

True positive rate

True positive rate

10%

2

R

<

Trained on all LSR of m12i (Medium data) 5D kinematics

M selection transfer

m12f LSRO - Medium data

m12f LSRO - Large data

False positive rate

o 0
10 10 2> 1.5 kpe, .
[Fe/H) <
2107 & Kinematic
g b m Metaiy
o 1072
=
g 10%
. No transfer learning: 0.932 o No transfer learning: 0.695
107 —— Transfer all: 0.930 =107 —— Transfer all: 0.685
—— Transfer first: 0.933 = —— Transfer first: 0.697
107 —— Transfer last: 0.932 10° —— Transfer last: 0.693
—— Transfer first and last: 0.933 —— Transfer first and last: 0.693
5 6
10 7
10° 107 10?2 10° 10° 107 10?2 10°

False positive rate

Trained on all LSR of m12i (Medium data) 5D + photometric

ZM selection transfer

m12f LSRO - Medium data

m12f LSRO - Large data

False positive rate
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Transfer learning results
Large set

Trained on LSRO of m12i (Large data) 5D

m12f LSRO - Medium data

ZM selection transfer

m12f LSRO - Large data
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With big training set,
transfer ].eSS necessary Trained on LSRO of m12i (Large data) 5D + photometric
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m12f LSRO - Medium data m12f LSRO - Large data
10° 10° 2> 1.5 kpe,
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Transfer all: 0.912
Transfer first: 0.946

True positive rate
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False positive rate
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Preliminary look at Gaia DR2

Preliminary!

Have created an (expected) 95% pure accreted Gaia DR2 dataset
e Contains 21304 stars with full 6D information

Gaia, Cutoff>0.95
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—400  —200 0 200 100

n Mlem /<l

4
—400  —200 0 200 100

—400  —200 0 200 100
na llem /<l

n. Nlem /<l

Gaia-Enceladus clearly visible
New structure (Nyx) visible without rotational symmetry

Will introduce asymmetry to local DM velocity if confirmed
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Next steps

Final validation and closure tests in FIRE Gaia mocks

Release a public catalog of virialized old stars in Gaia dataset

Extraction of local DM halo v distributions

» Effect on DM direct detection rates
» Characterize uncertainties in the method

Can be say anything about unvirialized/unresolved DM?
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Conclusions

Hierarchical mergers imply old stars are efficient DM tracers

> metallicity and kinematics serve as efficient selection criteria
» Gaia has no access to metallicity; cut-based analyses insufficient

Modern machine learning techniques allow the full resolving
power of the Gaia dataset to be brought on the problem

» Kinematic and spectral information can be as powerful
» Training must be performed carefully to avoid sample bias
» Transfer learning techniques help control systematics

Validation in simulation nearly complete

> Real data calalogs and physics analyses released soon
» New local structures in the glaxay already located
» Correlations of structures with DM affect DD interpretations

ML gives a path to unlocking the full potential of the Gaia
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Thank you!



