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Gaia and dark matter

• Gaia: the largest 5D/6D catalog of local astronomical objects
ever

• Can it teach us about the dark matter halo of the Milky Way?

• Why improve our halo models?
I Astronomers: Learn galactic formation histories
I Particle physicists: Halo feeds into detection rates

• Older stars act as tracers for (some) dark matter

• The challenge: identifying old stars with Gaia only
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Plan

• Gaia and DM

• Halo models and stellar tracers
I Toy models & merger histories
I Finding visible tracers of DM

• Machine learning with Gaia through FIRE
I General methods
I Validating performance

• Performance in simulation and prospects
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Toy models of Milky Way
visible galaxy

Central bulge + disk

us: ∼ 8kpc out

Mstellar ≈ 5× 1010M�

zdisk ≈ 0.6kpc
Rdisk ≈ 15kpc
Rbulge ≈ 4kpc
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Toy models of the Milky Way
DM halo

rotation curves (vc(r) =
√

GM
r ) =⇒ visible galaxy inside DM halo

Rhalo ∼ 100kpc, Mhalo ∼ 1012M�
flat vc(r) =⇒M(r) ∝ r

ρ(r) ∝ r−2

vc(Rhalo) ∼ 200km/ sec

• collisionless
• nonrelativistic
• self-gravitating
• isotropic/isothermal
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Hierarchical merger model

Where did all this come from?
1. Density fluctuations after big bang lead to protogalactic

fragments of O(106–108M�)
2. Fragments evolve in isolation creating stars/globular clusters
3. Collisions and tidal disruptions lead to distribution of halo

(stars and DM)
4. Gas in the mergers interacts and collapses to disk
5. Young and metal rich stars produced in the disk

The last major merger occurred ∼ 10Gyr ago
Minor mergers still happening
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Old stars as tracers

Local halo imprinted
with merger history

Stars and DM interact
almost only through
gravity

To find DM, find stars
from early mergers
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Tracing DM

How to detect the oldest stars?

Early merger −→ old star −→ low metallicity

[Fe/H] = log10

(
NFe
NH

)
− log10

(
NFe
NH

)
�
< C

Also helps not to look directly in the disk

|z| > zcut
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Tracing DM
results in simulation

Does this work?

-400-300-200-100 0 100 200 300 400
0
1
2
3
4
5
6
7
8
9
10

vρ [km/s]

10
3
f(
v)

[(
km

/s
)-
1 ]

Eris Galactic Velocity Distributions
|r - r⊙| < 2 kpc, |zDM|<2 kpc

[α/Fe]>0.2, [Fe/H]<-1
[α/Fe]>0.2, [Fe/H]<-2
[α/Fe]>0.2, [Fe/H]<-3
All Stars × 0.7
DM

-400-300-200-100 0 100 200 300 400
0
1
2
3
4
5
6
7
8
9
10

vz [km/s]

10
3
f(
v z
)
[(
km

/s
)-
1 ]

-400-300-200-100 0 100 200 300 400
0
1
2
3
4
5
6
7
8
9
10

vϕ [km/s]

10
3
f(
v ϕ
)
[(
km

/s
)-
1 ]

Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same velocity distributions!
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Old stars and DM share the same density profile!

Can stellar tracers of virialized DM be isolated in practice?
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Catalogs of real data

Phase space
• Gaia DR1 (2-D location
for 1.1 billion stars)
I Crossmatched with

Hipparcos Tycho-2
catalog (2 million stars)

• Gaia DR2 (5-D PS for 1.3
billion stars)

Spectroscopy + vr

• RAdial Velocity
Experiment
• Sloan Digital Sky Survey

RAVE-TGAS (255,922 stars) Gaia-SDSS (193,162 stars)
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. . . and real-world results

RAVE-TGAS
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Gaia-SDSS
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virialized DM velocities smaller than standard halo model
=⇒ implications for DM direct detection

But accuracy limited by cross-correlating data
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Plan

• Gaia and DM

• Halo models and stellar tracers
I Toy models & merger histories
I Finding visible tracers of DM

• Machine learning with Gaia through FIRE
I General methods
I Validating performance

• Performance in simulation and prospects
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Letting Gaia see on its own

DR2: 5-D kinematics and 2-band spectroscopy on 1.3 billion stars

Not enough information to extract metallicity conventionally
Idea: Use neural network classifier as old star distribution fitter
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Gaia data format details

Stellar information provided
• Galactic longitude and latitude (`,b)
• Proper motion in right ascension and declination (µα,δ)
• Parallax
• Blue- and red-band magnitude (GBP,RP)

Provides 5D phase-space information (radial v missing)
Complementary information to parallax in G
if neural network can learn distance–luminosity function
Residual information about metallicity also in G?
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Feed-forward NN classification
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Requires event-by-event labels for (simulated) training sample
• Use FIRE simulations with labels from known history

13/ 26



Network and training procedure

• Train 5-layer network
I 7 inputs à la Gaia
I 3 hidden layers of 100 nodes each
I star classified as accreted or not

• Label from FIRE merger history
I Remove metallicity middleman

• 600 million stars per viewpoint
• Include measurement uncertainty

by resampling each star within its
errors 20 times
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Crosschecks and transfer learning

Will training on Monte Carlo generalize to the Milky Way?

�5

LSR0

LSR1 LSR2

small, medium, 
and large sets

Training on small set and applying to large is similar to training on 
RAVE-TGAS or Gaia-SDSS and applying to DR2.

Train network on LSR0 and apply to LSR1, different view point similar 
to different galaxy. Use transfer learning techniques? Allows for FIRE 

pre-training for Gaia analysis. 

• Maybe just learn particular local
distribution/merger history?
I Compare different observations
I Compare different simulations

• Systematic errors in FIRE mocks?
• Compensate via transfer learning

I Lower NN layers learn simple cuts
I High-level observables in top layer
I Train full network on a dataset
I Reset top layer only and retrain

only that layer on new data
I Requires much less data in 2nd set
I Reduce sensitivity to complex

features in original training set
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Plan

• Gaia and DM

• Halo models and stellar tracers
I Toy models & merger histories
I Finding visible tracers of DM

• Machine learning with Gaia through FIRE
I General methods
I Validating performance

• Performance in simulation and prospects
I All results preliminary!
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Classifying close stars

!10

1) How much information is needed to identify the stars?

Close stars have multiple parallax measurements
−→ radial velocity recovered, full 6-D PS information available

Photometric data help when only reduced PS information exists
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Moving farther out

!14

Machine learning on medium dataset

Using only kinematics (or [Fe/H[ as well), doesn’t matter if small or medium dataset 

used for training

Using photometric data does not generalize to other data as well (more on this soon)At best only 5-D information at larger differences
5-D information or photometric data critical to best performance
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A closer look at photometric data

At smaller distances, training data doesn’t cover full HR diagram
Luminocity-distance relations not fully learned

must be careful training set goes out as far as real data with photometry
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Comparing viewpoints
Testing on LSR1

!6

LSR0

LSR1 LSR2

training on multiple viewpoints
=⇒ improved generalization

!6

LSR0

LSR1 LSR2
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Comparing viewpoints
Testing on LSR2

LSR0

LSR1 LSR2

!7

details depend on local kinematics
seemingly more stable generalization with GBP,RP

LSR0

LSR1 LSR2

!7
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Trying a new galaxy
ne
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New Galaxy

!9

Different merger history indicated by vϕ distribution

21/ 26



Transfer learning results
Medium set

More realistic scenario:
labels after transfer
from cuts, not truth

Use |z| and [Fe/H] to set
labels in m12f

Most effective to
recalibrate GBP,RP and
large-distance
kinematics

!16
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Transfer learning results
Large set

With big training set,
transfer less necessary

!17
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Preliminary look at Gaia DR2

Preliminary!

Have created an (expected) 95% pure accreted Gaia DR2 dataset
• Contains 21304 stars with full 6D information2
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Figure 1. Structures in velocity space for the Gaia accreted star catalog, with cutoff on the neural network output of 0.95.

Structure µr σr µφ σφ µθ σθ Fraction

[km/s] [km/s] [km/s] [km/s] [km/s] [km/s]

1, Halo -11 184 -8.3 137 -8 137 15%

2, Enceladus a 204 110 -33 60 -6 78 33 %

3, Enceladus b -173 109 -19 61 -3 77 36%

4, Nyx 156 52 126 59 -2 75 15%

Table 1. Gaia with cutoff 0.95

available in ThisWebsite.

In this Letter, we seek to identify the structures found

from this catalog when provided 6d phase-space infor-

mation. A subset of the Gaia data includes radial veloci-

ties, which subsequently gives 6 dimensional information

of a local group of ∼ 6 million stars. Using extreme de-

convolution in velocity space, we seek to identify veloc-

ity substructure, compare it with known structures, and

conclude with a comment on the implications of such

structures on dark matter (DM) searches.

2. STRUCTURES IN Gaia DR2

Cross matching the catalog given by Ostdiek et al.

(2019) with the subset of Gaia DR2 that includes radial

velocities leads to a sample of 21,304 stars. This stars

have a score larger than 0.75. In order to increase the

purity of the sample, we only plot stars with a neural

network score > 0.95, which leads to a star sample of

5,060 stars.

In Fig. 3, we show the densities in velocity space in

spherical coordinates of the sample. A few structures are

easily visible. This is a statement as to the ease of find-

ing structure with the method outlined in Ostdiek et al.

(2019). In order to quantify the structures, we use ex-

treme deconvolution (Bovy Jo et al. 2011) to locate the

different three-dimensional gaussian distributions that

contribute to the densities of Fig. 3. We find four struc-

tures that we label as Halo, Enceladus a, Enceldaus b,

and Nyx. One sigma contours around each structure

are shown in the figure. We list the best fit values of the

Gaussian distributions in Table 1. To have a better un-

derstanding on any spatial clustering of the structures

listed in Table 1, we find the stars that have a probability

larger than 30% to belong to to any of the four groups,

and associate it with it. We then plot their velocities as

arrows on a spatial projection of their locations in Figs.

2 and 3. We now study these structures one by one.

We first identify the main halo as the structure with

the means closest to zero in {vr, vφ, vθ}. It contributes

15% of the stars in the sample, and has large dispersions

in all directions (σr, σφ, σθ) = (184, 137, 137) km/s. The

dispersions in the angular directions are isotropic, al-

though it is much greater in the radial direction. The

stellar halo component is largely expected smooth, but

in this case, it might be slightly contaminated from

structures that we discuss below. We compare the val-

ues found here, to the those found through modeling of

the kinematics in Necib et al. (2019). The dispersions

found in this analysis are slightly larger than those found

through the modeling of previous work. This is largely

due to the fact that we are using only Gaussian distribu-

tions in this analysis, while more complicated structures

are necessary. These will be addressed in future work.

In Fig. 2, we show the positions and velocities of stars

that we attribute to the halo. It is important to note

that the sample is not spatially complete, and we there-

fore should not over-interpret any physical structure.

We expect it however to be kinematically complete as

Gaia-Enceladus clearly visible
New structure (Nyx) visible without rotational symmetry
Will introduce asymmetry to local DM velocity if confirmed
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Next steps

• Final validation and closure tests in FIRE Gaia mocks

• Release a public catalog of virialized old stars in Gaia dataset

• Extraction of local DM halo v distributions
I Effect on DM direct detection rates
I Characterize uncertainties in the method

• Can be say anything about unvirialized/unresolved DM?
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Conclusions

• Hierarchical mergers imply old stars are efficient DM tracers
I metallicity and kinematics serve as efficient selection criteria
I Gaia has no access to metallicity; cut-based analyses insufficient

• Modern machine learning techniques allow the full resolving
power of the Gaia dataset to be brought on the problem
I Kinematic and spectral information can be as powerful
I Training must be performed carefully to avoid sample bias
I Transfer learning techniques help control systematics

• Validation in simulation nearly complete
I Real data calalogs and physics analyses released soon
I New local structures in the glaxay already located
I Correlations of structures with DM affect DD interpretations

• ML gives a path to unlocking the full potential of the Gaia
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Thank you!
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