# FLOATING POINT ARITHMETIC IS NOT REAL 

Bei Wang<br>beiwang@princeton.edu<br>Princeton University

Third Computational and Data Science School for HEP (CoDaS-HEP 2019)
July 24, 2019

## 1D Histogram in Root

[beiwang@adroit4 ~]\$ root

| Welcome to ROOT 6.19/01 | https://root.cern |
| :--- | :--- |
| Built for linuxx8664gcc on May 29 2019, $18: 03: 14$ |  |
| From heads/master@v6-19-01-3-g408e52b |  |
| Try '.help', '.demo', '.license', '.credits', '.quit'/'.q' |  |$|$

root [0] auto h = new TH1F("h", "", 20, -5, 5);
root [1] h->Draw();
Info in [TCanvas::MakeDefCanvas](TCanvas::MakeDefCanvas): created default TCanvas with name c1 root [2] h->FillRandom("gaus", 100000000);
root [3] h->Draw();
root [4] h->FillRandom("gaus", 100000000);
root [5] h->Draw();
root [6] h->FillRandom("gaus", 100000000);
root [7] h->Draw();
root [8] h->FillRandom("gaus", 100000000);
root [9] h->Draw();
root [10] h->FillRandom("gaus", 100000000);
root [11] h->Draw();
root [12] h->FillRandom("gaus", 100000000);
root [13] h->Draw();
root [14] h->FillRandom("gaus", 100000000);
root [15] h->Draw();
root [16] pow(2, 24)
(double) 16777216.
Thanks Jim Pivarski to provide this great exercise!

- What happens after the second or the third fill?

- After the second fill, the middle of the Gaussian starts flattening out


## Outlines

- Basics
- Real numbers
- Representation of real numbers
- Computer representation of real numbers
- IEEE Floating Point Representation
- Formats
- Roundings
- Exceptions
- Approximate Math
- Goals
- Basic understanding of computer representation of numbers
- Basic understanding of floating point arithmetic
- Consequences of floating point arithmetic for scientific computing
- Basic understanding about fast math


## BASICS

## The Real Numbers

- The real numbers can be represented by a line

- Integers are the numbers, e.g., $0,1,-1,2,-2, \ldots$
- Rational numbers are those that consist of a ratio of two integers, e.g., $1 / 2,2 / 3,6 / 3$; some of these are integers
- Irrational numbers are the real numbers that are not rational, e.g., $\sqrt{2}, \pi$, e.


## Representation of Numbers

- In scientific notation, every real number can be represented by

$$
x=(-1)^{s}\left(\sum_{i=0}^{\infty} d_{i} B^{-i}\right) B^{e}
$$

where $\mathrm{s} \in\{0,1\}, B \geq 2, i \in\{0,1,2, \ldots\}, d_{i} \in\{0, \ldots, B-1\}$ and $d_{0}>0$ when $x \neq$ 0 . $B$ and e are integers.

Example

$$
\begin{aligned}
&(71)_{10}=\left(7 \times 10^{0}+1 \times 10^{-1}\right) \times 10^{1} \\
&(71)_{2}=\left(1 \times 2^{0}+0 \times 2^{-1}+0 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}+1 \times 2^{-5}+1 \times 2^{-6}\right) \times 2^{6} \\
&-\left(\frac{1}{10}\right)_{10}=(-1)^{1}\left(1 \times 10^{0}\right) \times 10^{-1} \\
&-\left(\frac{1}{10}\right)_{2}=(-1)^{1}(0.0001100110011 \ldots)_{2}=(-1)^{1}\left(1 \times 2^{0}+1 \times 2^{-1}+0 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}+\ldots\right) \times 2^{-4} \\
& \sqrt{2}=(1.414213 \ldots)_{10} \\
& \pi=(3.141592 \ldots)_{10}
\end{aligned}
$$

## Computer Representation of Numbers

- A computer has finite number of bits, thus can only represent a finite subset of the real numbers
- They are called floating point numbers and can be represented as

$$
x=(-1)^{s} \sum_{i=0}^{p-1} d_{i} B^{-i} B^{C}
$$

where $\mathrm{s} \in\{0,1\}, B \geq 2, d_{i} \in\{0, \ldots, B-1\}$ with $d_{0}>0$ when $x \neq 0 . i \in\{0, \ldots, p-1\}, e \in$ $\left\{e_{\min }, \ldots, e_{\max }\right\}$

- B is called the base
- $\sum_{i=0}^{p-1} d_{i} B^{-i}$ is called the significand (or mantissa)
- p is called the precision
- e is the exponent
- The representation is normalized when $d_{0}>0$ (scientific notation)


## Quiz: Binary Representation

- When $B=2$

$$
(x)_{2}=(-1)^{s}\left(1 . b_{1} b_{2} \ldots b_{p-1}\right) 2^{e}
$$

- $b_{0}=1$ is a hidden bit
- $b_{1} b_{2} \ldots b_{p-1}$ is called the fractional part of the significand
- $e \in\left\{e_{\text {min }}, \ldots, e_{\max }\right\}$
- The gap between 1 and the next larger floating point number is called machine epsilon, $\varepsilon$
- Questions: In this binary system
- What is the largest number?

$$
\left(x_{\max }\right)_{2}=\left(1-2^{-p}\right) 2^{e_{\max }+1}
$$

-What is the smallest positive normalized number?

$$
\left(x_{\min }\right)_{2}=2^{e_{\min }}
$$

-What is the $\varepsilon$ ?

$$
\varepsilon_{2}=(1.00 . .1) \times 2^{0}-(1.00 . .0) \times 2^{0}=(0.00 \ldots 1)_{2} \times 2^{0}=2^{-(p-1)}
$$

## A Toy Floating Point Number System

- For $\mathrm{p}=3, e_{\text {min }}=-1, e_{\max }=2$, the binary representation is

$$
(x)_{2}=(-1)^{s}\left(1 \cdot b_{1} b_{2}\right) 2^{e}
$$

- Look at the positive numbers with $\mathrm{e}=0,1,2,-1$

- The largest number is 7 and the smallest positive normalized number is $1 / 2$
- The spacing between 1 and $5 / 4$ is $1 / 4($ epsilon $=1 / 4$ )


## IEEE FLOATING POINT REPRESENTATION (IEEE 754 Standard)

## IEEE Floating Point Representation

- IEEE floating point numbers (in binary) can all be expressed in the form

$$
(x)_{2}=(-1)^{s}\left(b_{0} \cdot b_{1} b_{2} \ldots b_{p-1}\right) 2^{e-e_{\text {bias }}}
$$

where p is the precision. The exponent is stored biased as an unsigned integer.

- For example: IEEE single precision format (32 bits): $(x)_{2}=-1^{s}\left(b_{0} . b_{1} b_{2} \ldots b_{23}\right) 2^{e-127}$


| Exponent | Fraction Zero | Fraction Non-zero | Numerical value represented |
| :---: | :---: | :---: | :---: |
| 00000000 | $\pm 0$ | Subnormal numbers | $(-1)^{\text {sign } \times 2^{-126} \times 0 . f r a c t i o n ~}$ |
| $00000001, \ldots, 11111110$ | Normalized numbers | Normalized numbers | $(-1)^{\text {sign }} \times 2^{\text {exponent-127 } \times 1 . f r a c t i o n ~}$ |
| 11111111 | $\pm \infty$ | NaN | error pattern |

## Denormalized Numbers

- Denormalized numbers serve two purposes
- Provide a way to represent numeric value 0
- Provide gradual underflow where possible floating point numbers are spaced evenly between 0 and $x_{\text {min }}$ (the smallest normalized floating point numbers)
- They represent numerical values

$$
-1^{s}(0 . f r a c t i o n) 2^{e_{\min }}
$$

- Example, in the toy floating point system: $\mathrm{p}=3, e_{\min }=-1$, the non-negative subnormal numbers are:



## IEEE 754 Binary Formats

- IEEE provides five basic binary formats

| Type | Sign | Exponent | Significand field | Total bits | Exponent bias | Bits precision | Number of decimal digits |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Half (IEEE 754-2008) | 1 | 5 | 10 | 16 | 15 | 11 | $\sim 3.3$ |
| Single | 1 | 8 | 23 | 32 | 127 | 24 | $\sim 7.2$ |
| Double | 1 | 11 | 52 | 64 | 1023 | 53 | $\sim 15.9$ |
| x86 extended precision | 1 | 15 | 64 | 80 | 16383 | 64 | $\sim 19.2$ |
| Quad | 1 | 15 | 112 | 128 | 16383 | 113 | $\sim 34.0$ |

- C++ numerical_limits class template provides a standardized way to query various properties of floating point types
- See https://en.wikipedia.org/wiki/Floating-point_arithmetic


## Set up Adroit for Hands-on

- How to log into the Adroit system
- Login information was distributed on Monday
- Download the exercises from Github
- git clone https://github.com/beiwang2003/codas_fpa.git
- Move to the codas_fpa directory
- ca \$HOME/codas_fpa
- Set up environment:
- source setup_adroit.sh


## Hands-on: Check Floating Point Limits of Basic Types

- Compile the code: $g++-s t d=c++11$-Wall -march=native floats.cpp -o floats
- Run the code: ./float

```
#include<iostream> // std::cout
#include<limits> // std::numeric_limits
template<typename T>
void print_limits() {
    std::cout << std::boolalpha;
    std::cout << "Minimum value: " << std::numeric_limits<T>::min() << '\n';
    std::cout << "Maximum value: " << std::numeric_limits<T>::max() << '\n';
    std::cout << "Is signed: " << std::numeric_limits<T>::is_signed << '\n';
    std::cout << "significant bits: " << std::numeric_limits<T>::digits << '\n'i
    std::cout << "has infinity: " << std::numeric_limits<T>::has_infinity << '\n';
    std::cout << "base 10 digits: " << std::numeric_limits<T>::digits10 << '\n';
    std::cout << "machine epsilon: " << std::numeric_limits<T>::epsilon() << '\n';
}
int main () {
    std::cout<<"Numerical Limits of Float"<<std::endl;
    print_limits<float>();
    std::cout<<"Numerical Limits of Double"<<std::endl;
    print_limits<double>();
    std::cout<<"Numerical Limits of Long Double"<<std::endl;
    print_limits<long double>();
    return 0;
}
```

```
Numerical Limits of Float
Minimum value: 1.17549e-38
Maximum value: 3.40282e+38
Is signed: true
significant bits: 24
has infinity: true
base 10 digits: 6
machine epsilon: 1.102000-07
Numerical Limits of Double
Minimum value: 2.22507e-308
Maximum value: 1.79769e+308
Is signed: true
significant bits: 53
has infinity: true
base 10 digits: 15
machine epsilon: 2.22045e 16
Numerical Limits of long Double
Minimum value: 3.3621e-4932
Maximum value: 1.18973e+4932
Is signed: true
significant bits: 64
has infinity: true
base 10 digits: 18
machine epsilon: 1.0842e-19
```


## Rounding

- A a positive REAL number in the normalized range $\left(x_{\min } \leq x \leq x_{\max }\right)$ can be represented as

$$
(x)_{2}=\left(1 . b_{1} b_{2} \ldots b_{p-1} \ldots\right) \times 2^{e}
$$

where $x_{\min }\left(=2^{e_{\min }}\right)$ and $x_{\max }\left(=\left(1-2^{-p}\right) 2^{e_{\max }+1}\right)$ are the smallest and largest normalized floating point numbers. (Subscript 2 for binary representation is omitted since now.)

- The nearest floating point number less than or equal to x is

$$
x_{-}=\left(1 . b_{1} b_{2} \ldots b_{p-1}\right) \times 2^{e}
$$

- The nearest floating point number larger than x is

$$
x_{+}=\left(1 . b_{1} b_{2} \ldots b_{p-1}+0.00 \ldots 1\right) \times 2^{e}
$$

- The gap between $x_{+}$and $x_{-}$, called unit in the last place (ulp) is

$$
2^{-(p-1)} 2^{e}
$$

- The absolute rounding error is

$$
\operatorname{abserr}(x)=|\operatorname{round}(x)-x|<2^{-(p-1)} 2^{e}=\text { ulp }
$$

- The relative rounding error is

$$
\operatorname{relerr}(x)=\frac{|\operatorname{round}(x)-x|}{|x|}<\frac{2^{-(p-1)} 2^{e}}{2^{e}}=2^{-(p-1)}=\varepsilon
$$

## Rounding Modes

## - The IEEE standard defines five rounding modes

- The first two round to a nearest value; the others are called directed roundings
- Roundings to nearest
- Round to nearest, ties to even - rounds to the nearest value; if the number falls midway it is rounded to the nearest value with an even (zero) least significant bit, which occurs $50 \%$ of the time; this is the default algorithm for binary floating-point and the recommended default for decimal
- Round to nearest, ties away from zero - rounds to the nearest value; if the number falls midway it is rounded to the nearest value above (for positive numbers) or below (for negative numbers)
- Directed roundings
- Round toward 0 - directed rounding towards zero (also known as truncation).
- Round toward $+\infty$ - directed rounding towards positive infinity (also known as rounding up or ceiling).
- Round toward $-\infty$ - directed rounding towards negative infinity (also known as rounding down or floor).


## Quiz: A Toy Rounding Example



- Example:

```
float x=1000000000;
float y=1000000032;
float z=1000000033;
std::cout<<std::scientific<<std::setprecision(8)<< x <<' '<< y <<' '<<z<<std::endl;
```

- Question: What's the output?
- Answers: 1.00000000e+09 1.00000000e+09 1.00000006e+09
- When rounding to the nearest, $\operatorname{abserr}(x) \leq \frac{1}{2} u l p$ and relerr $(x) \leq \frac{1}{2} \varepsilon$


## Precision

- Floating point operations CANNOT precisely represent true arithmetic operations
- The operands are rounded
- They exist in a finite number ( $\sim 2^{32}$ for single precision)
- The space between two floating point numbers differs by one ulp
- Results of operations are rounded
- $x+\varepsilon-x \neq \varepsilon$
- Algebra is NOT necessarily associative and distributive
- $(a+b)+c \neq a+(b+c)$
- $a / b \neq a * 1 / b$
- $(\mathrm{a}+\mathrm{b}) *(\mathrm{a}-\mathrm{b}) \neq a^{2}-b^{2}$
- Example: what will be the result of $0.1^{2}$ ?
- In single precision, 0.1 is rounded and represented as 0.100000001490116119384765625 exactly
- Squaring it with single-precision floating point hardware (with rounding) gives 0.010000000707805156707763671875
- It is neither 0.01 nor the representable number closest to 0.01 (the representable number closest to 0.01 is 0.009999999776482582092285156250 )


## Quiz: Adding a Small and a Large Number



- Example:

$$
\begin{aligned}
& \text { float } x=1000000000 ; \\
& \begin{aligned}
\text { std::cout } & \ll \text { std::scientific } \ll \text { std::setprecision(8) } \\
& \ll x \ll ' ‘ \ll x+32 . f \ll ' \ll x+33 . f \ll \text { std::endl } \\
& \ll x+32 . f-x \ll '>\ll x+33 . f-x \ll \text { std::endl; }
\end{aligned}
\end{aligned}
$$

- Question: What is the output?
- 

```
Answers:
```

$1.00000000 \mathrm{e}+091.00000000 \mathrm{e}+091.00000006 \mathrm{e}+09$
$0.00000000 \mathrm{e}+006.40000000 \mathrm{e}+01$

## Histogram Problem in Root

[beiwang@adroit4 ~]\$ root

| Welcome to ROOT 6.19/01 | https://root.cern |
| :---: | :---: |
|  | 1995-2019, The ROOT Team |
| Built for linuxx8664gcc on May 29 | 2019, 18:03:14 |
| From heads/master@v6-19-01-3-g408 | e52b |
| Try '.help', '.demo', '.license', | '.credits', '.quit'/'.q' |

```
root [0] auto h = new TH1F("h", "", 20, -5, 5);
```

root [0] auto h = new TH1F("h", "", 20, -5, 5);

```
root [0] auto h = new TH1F("h", "", 20, -5, 5);
root [1] h->Draw();
root [1] h->Draw();
root [1] h->Draw();
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root [2] h }>\mathrm{ FillRandom("gaus", 100000000);
root [2] h }>\mathrm{ FillRandom("gaus", 100000000);
root [2] h }>\mathrm{ FillRandom("gaus", 100000000);
root [3] h->Draw();
root [3] h->Draw();
root [3] h->Draw();
root [4] h->FillRandom("gaus", 100000000);
root [4] h->FillRandom("gaus", 100000000);
root [4] h->FillRandom("gaus", 100000000);
root [5] h->Draw();
root [5] h->Draw();
root [5] h->Draw();
root [6] h->FillRandom("gaus", 100000000);
root [6] h->FillRandom("gaus", 100000000);
root [6] h->FillRandom("gaus", 100000000);
root [7] h->Draw();
root [7] h->Draw();
root [7] h->Draw();
root [8] h->>FillRandom("gaus", 100000000);
root [8] h->>FillRandom("gaus", 100000000);
root [8] h->>FillRandom("gaus", 100000000);
root [9] h->Draw();
root [9] h->Draw();
root [9] h->Draw();
root [10] h->FillRandom("gaus", 100000000);
root [10] h->FillRandom("gaus", 100000000);
root [10] h->FillRandom("gaus", 100000000);
root [11] h->Draw();
root [11] h->Draw();
root [11] h->Draw();
root [12] h->FillRandom("gaus", 100000000);
root [12] h->FillRandom("gaus", 100000000);
root [12] h->FillRandom("gaus", 100000000);
root [13] h->Draw();
root [13] h->Draw();
root [13] h->Draw();
root [14] h->FillRandom("gaus", 100000000);
root [14] h->FillRandom("gaus", 100000000);
root [14] h->FillRandom("gaus", 100000000);
root [15] h->Draw();
root [15] h->Draw();
root [15] h->Draw();
root [16] pow(2, 24
root [16] pow(2, 24
root [16] pow(2, 24
(double) 16777216.
(double) 16777216.
(double) 16777216.
root [12] h->FillRa
```

root [12] h->FillRa

```
root [12] h->FillRa
```



- After the second fill, the middle of the Gaussian starts flattening out
- Since the result of an operation is rounded, when adding a small and a large number, the small number might be dropped (ignored) if it is smaller than the ulp of the large number


## Hands-on: Summing Many Numbers

## - Questions: What are the potential arithmetic issues when summing many numbers?

- Compile the code: $g^{++}-s t d=c++11$-Wall -march=native patriot.cpp -o patriot
- Run the code: ./patriot

```
#include<cstdio>
#include<cstdlib>
int main() {
    float tenth=0.1f
    float count = float(60*60*100*10)
    printf("%f %f %a\n",count,count*tenth,count*tenth);
    float sum=0;
    long long n=0;
    while(n<1000000) {
        sum+=0.1f;
        ++n
    if (n<21 || n%36000==0) printf("step=%d expected=%f solution=%f diff=%f\n",n, 0.1f*n, sum, std::abs(0.1f*n-sum));
    }
    return 0;
}
```

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| p=72 | xpected=7200.000000 so | olution=7204.677734 | 677734 |
| = $=18800$ | expected=10800.000000 | solution=10795.431641 | diff $=4.568359$ |
| P=14 | expected=14400.000000 | solution=14381.369141 | diff=18.630859 |
| ep $=180000$ | expected=18000.000090 | solution=17967.306641 | diff=32.693359 |
| ep=216000 | expected=21600.000000 | solution=21553.244141 | diff=46.755859 |
| ep=252000 | expected=25200.000000 | solution=25139.181641 | diff $=60.818359$ |
| ep $=288000$ | expected=28880.000000 | solution=28725.119141 | diff $=74.888859$ |
| ep=324000 | expected=32400.000000 | solution=32311.056641 | diff=88.943359 |
| ep=360000 | expected=36000.000000 | solution=35958.347656 | diff $=41.652344$ |
| ep=396000 | expected=39600.000000 | solution=39614.597656 | diff $=14.597656$ |
| ep=432000 | expected=43200.000000 | solution=43270.847656 | diff $=70.847$ |
| ep=468000 | expected=46800.000000 | solution=46927.097656 | diff $=127.097656$ |
| ep=5048 | expected=50400.000000 | solution=59583.347656 | diff $=183.347656$ |
| ep=540000 | expected=54000.000000 | solution=54239.597656 d | diff $=239.597656$ |
| ep=576000 | expected=57600.000000 | solution=57895.847656 | diff $=295.847656$ |
| ep=612000 | expected=61200.000000 | solution=61552.097656 | diff $=352.097656$ |
| ep=648000 | expected=64800.000000 | solution=65208.347656 | diff=408.347656 |
|  | expected=68400.000000 | solution=68864.593750 did | diff=464.593750 |
| ep=720000 | expected=72000.000000 | solution=72520.843750 d | diff=520.843750 |
| ep=756000 | expected=75600.000000 | solution=76177.093750 did |  |
|  | expected=79200.000000 | solution=79833.343750 did | diff $=633.343750$ |
| ep=828000 | expected=82800.000000 | solution=83489.593750 did | diff $=689.593750$ |
|  |  | solution=87145.843750 did | diff $=745.843750$ |
|  |  | solution=99802.093750 did | diff=802.093750 |
| ep=936000 |  | 58.343750 dif |  |
|  |  |  |  |

Inspired by the patriot missile failure problem: http://www-users.math.umn.edu/~arnold/disasters/patriot.html

## Hands－on：Kahan Summation Algorithm

```
runction KahanSum(input)
    variables sum, c, y,t,i
    sum = 0.0
    m = // Prepare the accumulator
    c 0.0 // A running compensation for lost low-order bits
    for i = 1 to input.length do // The array input has elements indexed input[1] to input[input.length].
        y = input[i] - c // c is zero the first time around.
        t = sum + y // Alas, sum is big, y small, so low-order digits of y are lost,
        = (t - sum) - y // (t - sum) cancels the high-order part of y; subtracting y recovers negative (low part of y)
        // Algebraically, c should always be zero. Beware overly-aggressive optimizing compilers
    next i
    return sum
```

See：https：／／en．wikipedia．org／wiki／Kahan＿summation＿algorithm
－Compile the code：$g^{++}-s t d=c++11$－Wall－march＝native patriotKahan．cpp－o patriotKahan
－Run the code：．／patriotKahan

```
#include<cstdio>
#include<cstdlib>
int main() {
    float tenth=0.1f
    float count = float(60*60*100*10);
    printf("%f %f %a\n",count,count*tenth,count*tenth)
    float sum=0;
    long long n=0;
    float c=0;
    while (n < 1000000) {
        float y = 0.1f - c
        float x = sum + yi
        c = (x - sum) - y;
        sum = x;
        if (n<21 || n%36000==0) printf("step=%d expected=%f solution=%f diff=%f\n",n, 0.1f*n, sum, std::abs(0.1f*n-sum))
    }
```

step $=36000$ expected $=3600.000000$ solution $=3600.000000$ diff $=0.000000$ tep $=72000$ expected＝7200．000000 solution $=7200.000000$ diff $=0.000000$ step＝108000 expected＝19800．000000 solution＝10800．000000 diff $=0.000000$
step $=144000$ expected $=14400.000000$ solution $=14400.000000$ diff $=0.000000$ step $=18000 \theta$ expected $=18000.00000 \theta$ solution $=18000.00000 \theta$ diff $=0.000000$ tep $=216000$ expected $=21600.00000 \theta$ solution $=21600.000000$ diff $=0.000000$ step $=252000$ expected $=25200.000000$ solution $=25200.000000$ diff $=0.000000$
step $=288000$ expected $=28800.000000$ solution $=28800.000000$ diff $=0.000000$ step＝288000 expected＝28800．000000
solution＝28800．000000
diff
step $=324000$
expected $=32400.000000$
solution $=32400.000000$
diff $=0.0000000 ~$ step＝3600日0 expected＝36000．0ө日ө日0 solution＝36000．000ө0日 diff＝0．000000 step 396600 expected $=39600.000000$ solution $=39660.000000$ diff $=0.000000$ step＝432000 expected $=43200.000000$ solution $=43200.000000$ diff $=0.000000$ step $=468400$ expected $=46800.000000$ solution $=46800.000000$ diff $=0.000000$ step $=50400 \theta$ expected $=50400.000000$ solution $=50400.000000$ diff $=0.000000$ step $=540000$ expected $=54000.000000$ solution $=54000.000000$ diff $=0.000000$ step $=576000$ expected $=57600.000000$ solution 57600.000000 diff $=0.000000$
step $=612000$ expected $=61200.000000$ solution $=61200.000000$ diff $=0.000000$ step $=6124000$ expected＝661200．000000 solution＝61200． 000000 diff $=0.000000$

step＝68000 expected $=6480.000000$ solution $=64800.000000$ diff $=0.000000$ | step $=68400 \theta$ expected $=68400.00000 \theta$ solution $=68400.00000 \theta$ diff $=9.00000 \theta$ |
| :--- | step $=720000$ expected＝72000．000000 solution＝72000．000000 diff＝0．000000

step $=756000$ expected $=75600.000000$ solution $=75600.000000$ diff $=0.000000$ step $=756000$ expected $=75600.000000$ solution $=75600.000000$ diff＝0．000000
step $=792000$ expected $=79200.000000$ solution $=79200.000000$ diff $=0.000000$ $\begin{array}{ll}\text { step } \\ \text { step }=828800 & \text { expected }=82800.000000 \\ \text { solution }=82800.000000 & \text { diff }=0.000000\end{array}$ step $=864000$ expected $=86400.000000$ solution $=86400.000000$ diff $=0.000000$ step＝900000 expected＝90000．000000 solution＝90000．000000 diff＝0．000000
step＝936000 expected＝93600．000000 solution＝93600．000000 diff $=0.000000$


## Cancellation

- Cancellation occurs when we subtract two almost equal numbers
- The consequence is the error could be much larger than the machine epsilon
- For example, consider two numbers

$$
\begin{aligned}
& x=3.141592653589793 \text { (16-digit approximation to } \pi) \\
& y=3.141592653585682 \text { (12-digit approximation to } \pi)
\end{aligned}
$$

Their difference is

$$
z=x-y=0.000000000004111=4.111 \times 10^{-12}
$$

In a C program, if we store $x, y$ in single precision and display $z$ in single precision, the difference is

$$
0.000000 \mathrm{e}+00
$$

Complete loss of accuracy

If we store $x, y$ in double precision and display $z$ in double precision, the difference is

$$
4.110933815582030 \mathrm{e}-12
$$

## Cancellation: The Solution of Quadratic Equation

- Consider the quadratic equation $a x^{2}+b x+c=0$, the roots are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { Two sources of cancellation }
$$

- A better solution will be

$$
\begin{aligned}
& x_{1}=\frac{-b-\operatorname{sign}(b) \sqrt{b^{2}-4 a c}}{2 a} \\
& x_{2}=\frac{2 c}{-b-\operatorname{sign}(b) \sqrt{b^{2}-4 a c}}=\frac{c}{a x_{1}}
\end{aligned}
$$

- When $\mathrm{a}=1, \mathrm{~b}=1.786737589984535$ and $\mathrm{c}=1.149782767465722 \times 10^{-8}$, in double precision, the first formula yields

$$
\begin{aligned}
& x_{1}=(1.786737601482363+1.786737578486707) / 2=1.786737589984535 \\
& x_{2}=(1.786737601482363-1.786737578486707) / 2=0.000000011497828
\end{aligned}
$$

- The second formula yields

$$
\begin{aligned}
& x_{1}=(1.786737601482363+1.786737578486707) / 2=1.786737589984535 \\
& x_{2}=2.054360090947453 \times 10^{-8} / 1.786737589984535=1.149782767465722 \times 10^{-8}
\end{aligned}
$$

## Exceptions

- The IEEE floating point standard defines several exceptions that occur when the result of a floating point operation is unclear or undesirable. Exceptions can be ignored, in which case some default action is taken, such as returning a special value. When trapping is enabled for an exception, an error is signaled whenever that exception occurs. Possible floating point exceptions:
- Underflow: The result of an operation is too small to be represented as a normalized float in its format. If trapping is enabled, the floating-point-underflow condition is signaled. Otherwise, the operation results in a denormalized float or zero.
- Overflow: The result of an operation is too large to be represented as a float in its format. If trapping is enabled, the floating-point-overflow exception is signaled. Otherwise, the operation results in the appropriate infinity.
- Divide-by-zero: A float is divided by zero. If trapping is enabled, the divide-by-zero condition is signaled. Otherwise, the appropriate infinity is returned.
- Invalid: The result of an operation is ill-defined, such as (0.0/0.0). If trapping is enabled, the floating-pointinvalid condition is signaled. Otherwise, a quiet NaN is returned.
- Inexact: The result of a floating point operation is not exact, i.e. the result was rounded. If trapping is enabled, the floating-point-inexact condition is signaled. Otherwise, the rounded result is returned.
- Trapping of these exceptions can be enabled through compiler flags, but be aware that the resulting code will run slower.


## Approximate Math

## Strict IEEE 754 vs Fast Math

- Compilers can treat FP math either in "strict IEEE754 mode" or "fast math" using algebra rules for real numbers
- Compiler options allow you to control tradeoffs among accuracy, reproducibility and speed - GCC Compilers
- gcc default is "strict IEEE 754 mode"
- -O2 -funsafe-math-optimization: allow arbitrary reassocations and transformations
- -O2 -ffast-math: -funsafe-math-optimization + no exceptions and special quantities handling enforcement
- -Ofast: -O3 (turn on vectorization) + -ffast-math + others
- See: https:/ / gcc.gnu.org/wiki/FloatingPointMath
- Intel Compilers
- icc uses compiler switch -fp-model to choose the floating-point semantics
- precise allows value-safe optimizations only
- source specify the intermediate precision double used for extended floating-point expression evaluation
- except enables strict floating-point exception semantics
- strict enables access to the FPU environment
disables floating-point contractions such as fused multiply-add (fma) instructions implies "precise" and "except"
- See: https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

[^0]
## Speeding Math Up

- Typical cost of operations in modern CPU

| operations | instruction | SSE single | SSE double | AVX single | AVX double (FMA) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ,+- | ADD, SUB | 3 | 3 | 3 | 3 |
| * | MUL | 5 | 5 | 5 | 5 |
| /,sqrt | DIV, SQRT | $10-14$ | $10-22$ | $21-29$ | 4 |
| 1.f/,1.f/sqrt | RCP, RSQRT | 5 | 7 | $21-45$ |  |
| A |  |  | 7 |  |  |

- Avoid or factorize-out division and sqrt
- If possible, compile with "-Ofast" or "-ffast-math"
- If possible, use hardware-supported reciprocal square root
- Prefer linear algebra to trigonometric functions
- Choose precision to match required accuracy
- Square and square-root decrease precision
- Catastrophic precision-loss in the subtraction of almost-equal large numbers
https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/Vincenzo_OptimalFloatingPoint2018.pdf https:// stackoverflow.com/questions/39095993/does-each-floating-point-operation-take-the-same-time


## Lessons Learned

- Representing real numbers in a computer always involves an approximation and a potential loss of significant digits.
- Testing for the equality of two real numbers is not a realistic way to think when dealing with the numbers in a computer. It is more realistic to test the difference of two numbers with respect to machine epsilon.
- Performing arithmetic on very small or very large numbers can lead to errors that are not possible in abstract mathematics. We can get underflow and overflow, and the order in which we do arithmetic can be important. This is something to be aware of when writing low-level software to to do computations.
- The more bits we use to represent a number, the greater the precision of the representation and the more memory we consume.


## References

- Optimal floating point computation: Accuracy, Precision, Speed in scientific computing. Innocente. 2018
- Handbook of Floating-Point Arithmetic. Mueller et al. 2010
- What Every Computer Scientist Should Know About Floating-Point Arithmetic. Goldberg. https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- Numerical Computing with IEEE Floating Point Arithmetic. Overton, SIAM 2001
- ESC18, "Optimal Floating Point Computation", Vincenzo Innocente, https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/ Vincenzo OptimalFloatingPoint2018.pdf
- CoDas-HEP 2018, "Floating Point is Not Real", Matthieu Lefebvre, https://indico.cern.ch/event/707498/contributions/2916937/attachments/1691892/27 24587/codas_fpa.pdf
- https://stackoverflow.com/questions/39095993/does-each-floating-point-operation-take-the-same-time


## BACK UP

## Floating Point Numbers

- Again, let us consider the floating point representation (assume $x \neq 0$ )

$$
x=-1^{s}\left(\sum_{i=0}^{p-1} d_{i} B^{-i}\right) B^{e}
$$

where $\mathrm{s} \in\{0,1\}, B \geq 2, d_{i} \in\{0, \ldots, B-1\}$ with $d_{0}>0, i \in\{0, \ldots, p-1\}, e \in\left\{e_{\min }, \ldots, e_{\max }\right\}$.
-What is the largest number in the system?

$$
x_{\max }=\left(\sum_{i=0}^{p-1}(B-1) B^{-i}\right) B^{e_{\max }}=\left(1-B^{-p}\right) B^{e_{\max }+1},\left(x_{\max }\right)_{2}=\left(1-2^{-p}\right) 2^{e_{\max }+1}
$$

- What is the smallest positive normalized in the system

$$
x_{\text {min }}=B^{e_{\min }},\left(x_{\min }\right)_{2}=2^{e_{\text {min }}}
$$

- The gap between number 1.0 and the next larger floating point number is called machine epsilon. What is the machine epsilon in the system?

$$
\varepsilon=B^{-(p-1)}, \varepsilon_{2}=(1.00 \ldots 1)_{2}-(1.00 \ldots 0)_{2}=(0.00 \ldots 1)_{2}=2^{-(p-1)}
$$

- The gap between $B^{E}$ and the next larger floating point number is called unit in the last place (ulp). What is the upl in the system?

$$
u l p(x)=B^{-(p-1)} B^{e}=\varepsilon B^{e}, u l p(x)_{2}=(1.00 \ldots 1)_{2} 2^{e}-(1.00 \ldots 0)_{2} 2^{e}=(0.00 \ldots 1)_{2} 2^{e}=2^{-(p-1)} 2^{e}
$$

## Correctly Rounded Arithmetic

- The IEEE standard requires that the result of addition, subtraction, multiplication and division be exactly rounded.
- Exactly rounded means the results are calculated exactly and then rounded. For example: assuming $\mathrm{p}=23, x=(1.00 . .00)_{2} \times 2^{0}$ and $z=(1.00 . .01)_{2} \times 2^{-25}$, then $x-z$ is

|  | $(1.00000000000000000000000 \mid$ | $)_{2} \times 2^{0}$ |
| ---: | :--- | :--- |
| - | $(0.00000000000000000000000 \mid 0100000000000000000000001$ | $)_{2} \times 2^{0}$ |
| $=$ | $(0.11111111111111111111111 \mid 1011111111111111111111111$ | $)_{2} \times 2^{0}$ |
| ze : | $(1.11111111111111111111111 \mid 0111111111111111111111110$ | $)_{2} \times 2^{-1}$ |
| to |  |  |
| st : | $(1.11111111111111111111111$ | $)_{2} \times 2^{-1}$ |

- Compute the result exactly is very expensive if the operands differ greatly in size
- The result of two or more arithmetic operations are NOT exactly rounded
- How is correctly rounded arithmetic implemented?
- Using two additional guard bits plus one sticky bit guarantees that the result will be the same as computed using exactly rounded [Goldberg 1990]. The above example can be done as

|  | ( 1.00000000000000000000000\| | $)_{2} \times 2^{0}$ |
| :---: | :---: | :---: |
| - | ( 0.00000000000000000000000\|011 | $)_{2} \times 2^{0}$ |
| $=$ | ( 0.11111111111111111111111\|101 | $)_{2} \times 2^{0}$ |
| Normalize : | ( 1.11111111111111111111111\|01 | $)_{2} \times 2^{-1}$ |
| Round to Nearest : | ( 1.11111111111111111111111 | $)_{2} \times 2^{-1}$ |

## Fused Multiply Add (FMA)

- $\operatorname{fma}(a, b, c)=\operatorname{round}\left(a^{*} b+c\right)$
- Opposed to round(round(a*b)+c)
- Single instruction with 4 or 5 cycle latency
- Opposed to 2 instructions with 5+3 cycle latency
- More precise with one rounding
- Opposed to two, but the results will be different
- Introduce a "contraction" issue
- $\left.\operatorname{sqrt(a*a~}-b^{*} b\right)$ may be contracted using FMA like fma( $\left.a, a,-b * b\right)$. If $a==b$, the result can be nonzero
- Compiler support
- Intel Compiler: -fp-model = strict (default is "fast")
- GCC (and Clang) flags: -ffp-contract=off (default is "fast")
- https://stackoverflow.com/questions/34436233/fused-multiply-add-and-default-rounding-modes


## Cancellation

- Cancellation occurs when we operate numbers that are not in floating point format
- For every $x \in \mathbb{R}$, there exists $|\varepsilon|<\varepsilon_{\text {mach }}$ such that

$$
\operatorname{round}(x)=x(1+\varepsilon)
$$

- Thus

$$
\begin{aligned}
\operatorname{round}(\operatorname{round}(x)-\operatorname{round}(y)) & =(\operatorname{round}(x)-\operatorname{round}(y))\left(1+\varepsilon_{3}\right) \\
& =\left(x\left(1+\varepsilon_{1}\right)-y\left(1+\varepsilon_{2}\right)\right)\left(1+\varepsilon_{3}\right) \\
& =(x-y)\left(1+\varepsilon_{3}\right)+\left(x \varepsilon_{1}-y \varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)
\end{aligned}
$$

and if $(x-y) \neq 0$,

$$
\left|\frac{(\operatorname{round}(\operatorname{round}(x)-\operatorname{round}(y))}{x-y}\right|=\left|\varepsilon_{3}+\frac{x \varepsilon_{1}-y \varepsilon_{2}}{x-y}\left(1+\varepsilon_{3}\right)\right|
$$

when $x \varepsilon_{1}-y \varepsilon_{2} \neq 0$, and $\mathrm{x}-\mathrm{y}$ is small, the error could be $\gg \varepsilon_{\text {mach }}$


[^0]:    PRINCETON UNIVERSITY

