
Introduction to Version Control
with Git and GitHub

CoDaS-HEP school (2019) at Princeton University

David Luet

Princeton University
PICSciE, Research Computing/OIT, Geosciences

July 22, 2019

Outline
Version Control Systems (VCS)

Definition
Distributed VCS

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Remote Repositories
Introduction
Creating a Remote Repository From git_cheatsheet
Working With Remote Repositories
Conclusion

References
Git Remote Repository Hosting
Graphical User Interfaces
Further Learning

Appendices
git checkout
git revert
git reset
git submodule

Outline

Version Control Systems (VCS)

Git locally

Remote Repositories

References

Appendices

Outline

Version Control Systems (VCS)
Definition
Distributed VCS

What does a version control system do?

A Version Control System (VCS) is a system that:
I records changes to a file or set of files over time.
I so that you can recall specific versions later.

But what can it do for me?

A VCS allows you to:
I revert specific files or the entire project back to a previous state.
I compare changes over time.
I see who made the changes.

It’s not just for source code

I Typically, the files under version control are software source
code.

I But you you can do this with nearly any type of file on a
computer.

I LATEX files.
I text files.
I configuration files.
I input files for a code.

I Word of caution: most VCSs don’t handle binary files well.

Using VCS is liberating

I It makes it easy to recover from mistakes.
I It remembers what you did for you.
I Best of all: it’s not that hard to use.

I already have a system: I keep my files in time
stamped directories

I Copy files into another directory or make a tarball.

src_implicit
src_explicit_works
src_explicit_fails
src_20170501.tgz

I This approach is very common because it is so simple.

But it’s incredibly error prone

I Too easy to accidentally overwrite or delete files.
I Complex to manage.
I Hard to collaborate with others.
I You are better off learning good habits now.

Outline

Version Control Systems (VCS)
Definition
Distributed VCS

Definition: repository

Version 1

Version 2

Version 3

A repository is a set of files and directories that describes every
version of the files under version control.

Distributed VCS (Git, Mercurial, Bazaar or Darcs)

Remote Server

Version 1

Version 1

Dev A

Version 1

Dev B

Version 2

Version 2

Version 2

Version 3
Version 3

Version 3

I Developers have a fully mirror of the repository.
I It contains all every versions of every files in the repository.

I Every clone is really a full backup of all the data.

Advantages of DVCS

I You don’t need an internet connection to interact with the repo.
I Duplication: if any server dies any of the client repositories can

be copied back up to the server to restore it.
I Supports multiple remote repositories:

I so you can collaborate with different groups of people.
I Differentiate between private and public work.

Outline

Version Control Systems (VCS)

Git locally

Remote Repositories

References

Appendices

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Git history

Created in 2005 by Linus Torvalds, the creator of Linux, with the goals
of:

I Speed
I Simple design
I Strong support for non-linear development (thousands of parallel

branches)
I Fully distributed
I Able to handle large projects like the Linux kernel efficiently

(speed and data size)

Git stores snapshots of the files

Each snapshot is called a commit.

Nearly every operation is local

I Most operations in Git only need local files and resources to
operate:

I generally no information is needed from another computer on your
network.

I You don’t need an internet connection to:
I browse the history of the project.
I commit your changes.

Commit ID

I Git uses a checksum mechanism called SHA-1 hash to
differentiate and name the commits.

I Think of it as a unique label for a snapshot.
I The SHA-1 hashes are 40 characters long but you only need the

first few (e.g. 7) to differentiate the commits uniquely.

$ git log --oneline
ed46b26 (HEAD -> master) Add adding_newfile to the index
5ba1206 Add new file and fix getting_repo.md
c1b0ca8 Initial commit

$ git show
commit ed46b26cd7cd2b2541c89f4a49799f2222f2c04b (HEAD -> master, origin/master)
Author: David Luet <luet@princeton.edu>
Date: Wed Apr 19 20:19:20 2017 -0400
Add adding_newfile to the index

Git generally only adds data

I When you do actions in Git, nearly all of them only add data to
the Git database.

I It is hard to get the system to do anything that is not undoable or
to make it erase data in any way.

I After you commit a snapshot into Git, it is very difficult to lose it,
especially if you regularly push your database to another
repository.

I You can experiment freely without the fear of screwing up.
I But you can lose or mess up changes you haven’t committed yet.

States of files in the current directory

I Each file in your current directory can be in one of two states:
I untracked.
I tracked.

I Tracked files are files that were in the last snapshot then can be
in three states:

I unmodified or committed: latest version in Git.
I modified: file has changed since last commit.
I staged: marked to be introduced in the next commit (snapshot).

Stagging Area - A Photography Analogy

Stagging Area - Crafting Your Photography [commit]

Stagging Area - Adding Objects [changes]

Stagging Area - Adding More Object [changes]

Stagging Area - Removing an Object [changes]

Stagging Area - Taking the Photo/Snapshot [commit]

Files life cycle

ModifiedUnmodified

Delete the file

Stage the file

Edit the file

Commit

Add the file

Untracked

Tracked

Staged

Three main sections of Git

I The Git directory where Git stores the meta data and object
database for your project.

I The working directory is a single checkout (snapshot) of one
version of the project.

I The staging area is a file that stores information about what will
go into your next commit.

I It’s sometimes referred to as the "index", but it’s also common to
refer to it as the staging area.

Basic Git Workflow
I The first time you checkout the repository, you copy files from the
.git directory to the Working directory.

I You modify files in your working directory.
I You stage the files, adding snapshots of them to your staging

area.
I You do a commit, which takes the files as they are in the staging

area and stores that snapshot permanently to your Git directory.

Installing Git on your machine

The Git book has some explanation for different OS:
Getting Started - Installing Git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

First time Git setup

I Set up your identity. Especially important when you work with
people:

$ git config --global user.name "David Luet"
$ git config --global user.email luet@princeton.edu

I Your favorite editor and some colorful User Interface:

$ git config --global core.editor micro
$ git config --global color.ui auto

I Checking your settings:

$ git config --list

Getting help

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

For example:

$ git help config
$ git config --help
$ man git-config

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Micro text editor

I micro text editor:
I open a file: Ctrl+o.
I save: Ctrl+s.
I quit: Ctrl+q.
I help: Ctrl+g.
I it supporst mouse selection and clipboard (copy/paste):
Ctrl+c/Ctrl+v.

I quick start.

https://micro-editor.github.io/
https://github.com/zyedidia/micro/blob/master/runtime/help/help.md#quick-start

Creating a Git repository: let’s get some files first

You can download a tarball from the command line using the
command curl:

curl -O -J https://luet.princeton.edu/git/01_git.tar

Creating a Git repository from an existing directory

untar/uncompress tarball
$ tar xf 01_git.tar

move to the new directory
$ cd 01_git_cheatsheet

list what is in the directory
$ ls
getting_repo.md index.md tohtml.sh

Create a Git repo
$ git init
Initialized empty Git repository in \
/Users/luet/talks/PICSciEGit/cheatsheet/\
git_cheatsheet/.git/

list again to see what has changed
$ ls -a
.git getting_repo.md index.md tohtml.sh

Status of the repo

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will \

be committed)

getting_repo.md
index.md
tohtml.sh

nothing added to commit but untracked files present \
(use "git add" to track)

Status

StagedUnmodified ModifiedUntracked

getting_repo.md

index.md
tohtml.sh

Git tells you what to do next

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will \

be committed)

getting_repo.md
index.md
tohtml.sh

nothing added to commit but untracked files present \
(use "git add" to track)

Adding files: staging files for commit

$ git add getting_repo.md index.md tohtml.sh
$ git status
On branch master

Initial commit

Changes to be committed: <= this means changes stagged
(use "git rm --cached <file>..." to unstage)

new file: getting_repo.md
new file: index.md
new file: tohtml.sh

Status

StagedUnmodified ModifiedUntracked

getting_repo.md

index.md
tohtml.sh

Committing files

$ git commit -m "Initial commit"
[master (root-commit) c1b0ca8] Initial commit
3 files changed, 16 insertions(+)
create mode 100644 getting_repo.md
create mode 100644 index.md
create mode 100755 tohtml.sh

Status

StagedUnmodified ModifiedUntracked

getting_repo.md
index.md
tohtml.sh

Recording changes to the repository

I Let’s assume that we have a Git repository and a checkout of the
files for that project.

I We are going to:
I make some changes.
I commit snapshots of those changes into the repository.

Checking the status of your files

$ git status
On branch master
nothing to commit, working directory clean

I This means you have a clean working directory:
I no tracked and modified files.
I no untracked files

I The command tells you which branch you are on (master).

Adding a new file

I Add a new file (micro is a text editor):
open the file with a text editor
$ micro adding_newfile.md
Add whatever content you would like
and save and quit (Ctrl+S, Ctrl+Q in micro)

I git status shows it as untracked and tells you what to do
next.
$ git status
On branch master
Untracked files:

(use "git add <file>..." to include in what \
will be committed)

adding_newfile.md

nothing added to commit but untracked files \
present (use "git add" to track)

Status

tohtml.sh

Untracked Unmodified Modified Staged

adding_newfile.md

getting_repo.md

index.md

Untracted files

I Untracked basically means that Git sees a file you did not have in
the previous snapshot (commit)

I Git won’t start including it in your commit snapshots until you
explicitly tell it to do so.

I It does this so you don’t accidentally begin including generated
binary files or other files that you did not mean to include.

Tracking new files

I You do want to start including adding_newfile.md, so let’s
start tracking the file.
$ git add adding_newfile.md

Status

tohtml.sh

Untracked Unmodified Modified Staged

adding_newfile.md

getting_repo.md

index.md

Looking at the status again

$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: adding_newfile.md

I You can tell that it’s staged because it’s under the Changes to
be committed heading.

I If you commit at this point, the version of the file at the time you
ran git add is what will be in the historical snapshot.

I The git add command takes a path name for either a file or a
directory: if it’s a directory, the command adds all the files in that
directory recursively.

Modifying tracked files
I Let’s change a file that was already tracked: getting_repo.md
$ micro getting_repo.md
Modify the file and save and quit
Ctrl+S, Ctrl+Q in micro

I and then run the git status command again
$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: adding_newfile.md

Changes not staged for commit:
(use "git add <file>..." to update what will \

be committed)
(use "git checkout -- <file>..." to discard \

changes in working directory)

modified: getting_repo.md

Status

getting_repo.md

Untracked Unmodified Modified Staged

adding_newfile.md

index.md
tohtml.sh

Staging modified files

I To stage the changes to getting_repo.md, you run the git
add command.

I git add is a multipurpose command, you use it to:
I begin tracking new files
I to stage files
I and to do other things like marking merge-conflicted files as

resolved.
I It may be helpful to think of it:

I more as "add this content to the next commit",
I rather than "add this file to the project".

Staging modified files

Let’s run git add now to stage the file getting_repo.md, and
then run git status again:

$ git add getting_repo.md
$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: adding_newfile.md
modified: getting_repo.md

Status

getting_repo.md

Untracked Unmodified Modified Staged

adding_newfile.md

index.md
tohtml.sh

Modifying staged files
At this point, suppose you remember one little change that you want
to make in getting_repo.md before you commit it.

$ micro getting_repo.md # modify the file
$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: adding_newfile.md
modified: getting_repo.md

Changes not staged for commit:
(use "git add <file>..." to update what will \

be committed)
(use "git checkout -- <file>..." to discard \

changes in working directory)

modified: getting_repo.md

Status

getting_repo.mdgetting_repo.md

Untracked Unmodified Modified Staged

adding_newfile.md

index.md
tohtml.sh

Files can be both staged and unstaged

I Now getting_repo.md is listed as both staged and unstaged.
How is that possible?

I It turns out that Git stages a file exactly as it is when you run the
git add command.

I If you commit now, the version of getting_repo.md as it was
when you last ran the git add command is how it will go into
the commit, not the version of the file as it looks in your working
directory when you run git commit.

Files can be both staged and unstaged

If you modify a file after you run git add, you have to run git add
again to stage the latest version of the file:

$ git add getting_repo.md
$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
new file: adding_newfile.md
modified: getting_repo.md

Status

adding_newfile.md

Untracked Unmodified Modified Staged

index.md
tohtml.sh

getting_repo.md

Ignoring files

I Often, you’ll have a class of files that you don’t want Git to
automatically add or even show you as being untracked:

I Objects files *.o
I Latex generates a lot of log files *.log,*.aux,*.bbl.
I micro generates backup files that end with a ~.

I In such cases, you can create a file listing patterns to match
them named .gitignore.

I Setting up a .gitignore file before you get going is generally a
good idea so you don’t accidentally commit files that you really
don’t want in your Git repository.

Adding .gitignore

I In our example, the script tohtml.sh reads the Markdown
(*.md) and converts them into HTML. We don’t want to save
those HTML files since we can generate them easily.

I So our .gitignore file looks like that:
$ cat .gitignore

*~

*.html

I You need to add .gitignore to the Git repository
$ git add .gitignore

Status

adding_newfile.md
.gitignore

Untracked Unmodified Modified Staged

index.md
tohtml.sh

getting_repo.md

Viewing your staged and unstaged changes

I The git status only tells you the status of a file.
I To know exactly what changes you have made to the file use git
diff.

I You will probably use it most often to answer these two
questions:

1. What have you changed but not yet staged?
$ git diff

2. What have you staged but not yet committed?
$ git diff --cached

I git status answers those questions very generally by listing
the file names

I git diff shows you the exact lines added and removed.

git diff example
$ git diff adding_newfile.md
$ git diff --cached adding_newfile.md
diff --git a/adding_newfile.md b/adding_newfile.md
new file mode 100644
index 0000000..6fcccbd
--- /dev/null
+++ b/adding_newfile.md
@@ -0,0 +1,14 @@
+# Adding new files
+
+- Check status
+
+ git status
+
+- Stage changes
+
+ git add file_name
+
...

Committing your changes

I Now that your staging area is set up the way you want it, you can
commit your changes.

I The simplest way to commit is to type git commit.
I Doing so launches your editor of choice.

Commit message
The editor displays the following text:
Please enter the commit message for your changes. Lines starting
with ’#’ will be ignored, and an empty message aborts the commit.
On branch master
#
Changes to be committed:
new file: .gitignore
new file: adding_newfile.md
modified: getting_repo.md
#
~

I The lines starting with # are comments and won’t be part of your
message.

I You can see that the default commit message contains the latest
output of the git status command commented out and one
empty line on top.

I For an even more explicit reminder of what you have modified,
you can pass the -v option to git commit.

Commit message

I Add the commit message, which a description of the changes:

Please enter the commit message for your changes. Lines starting
...
#
Add new file and fix getting_repo.md

I After adding the commit message you save (Ctrl+S) and exit
(Ctrl+Q).

I Git gives you a summary of what has changed.

[master 5ba1206] Add new file and fix getting_repo.md
3 files changed, 27 insertions(+), 4 deletions(-)
create mode 100644 .gitignore
create mode 100644 adding_newfile.md

Commit message

I Alternatively, you can type your commit message inline with the
commit command by specifying it after a -m flag, like this:

$ git commit -m "Add new file and fix getting_repo.md"
[master 5ba1206] Add new file and fix getting_repo.md
3 files changed, 27 insertions(+), 4 deletions(-)
create mode 100644 .gitignore
create mode 100644 adding_newfile.md

I git commit outputs some information:
I which branch you committed to (master),
I the commit id (5ba1206),
I how many files were changed,
I statistics about lines added and removed in the commit.

Status

adding_newfile.md
.gitignore

Untracked Unmodified Modified Staged

index.md
tohtml.sh

getting_repo.md

Skipping the staging area

I The staging area:
I is amazingly useful for crafting commits exactly how you want them.
I but sometimes it’s a bit more complex than you need in your

workflow.
I If you want to skip the staging area, Git provides a simple

shortcut.
I Adding the -a option to the git commit command makes Git

automatically stage every file that is already tracked before doing
the commit, letting you skip the git add part:
$ git commit -am "Your commit message"

I This is convenient, but be careful: sometimes this flag will cause you
to include unwanted changes.

A simple workflow

I make changes to file1 file2
I commit directly (skip stagging area) with the commit message on

the command line:

git commit -m "Do something" file1 file2 ...

I or all the unstaged, uncommited changes to tracked files:

git commit -am "Do something"

Note: untracked files won’t be part of the commit.

Viewing the commit history

I Looking back at what has happened: the history of the repo.
I The most basic and powerful tool to do this is the git log

command.

Git log

$ git log
commit ed46b26cd7cd2b2541c89f4a49799f2222f2c04b
Author: David Luet <luet@princeton.edu>
Date: Wed Apr 19 20:19:20 2017 -0400

Add adding_newfile to the index

commit 5ba1206793de8e1818a387a8919281f47aeca523
Author: David Luet <luet@princeton.edu>
Date: Wed Apr 19 16:58:14 2017 -0400

Add new file and fix getting_repo.md

commit c1b0ca817eb513ab66c33f8e9008f7cd3664d22c
Author: David Luet <luet@princeton.edu>
Date: Wed Apr 19 14:23:33 2017 -0400

Initial commit

Git log

I One of the more helpful options is -p, which shows the
difference introduced in each commit.

I You can also use -2, which limits the output to only the last two
entries:

$ git log -p -2
commit ed46b26cd7cd2b2541c89f4a49799f2222f2c04b
Author: David Luet <luet@princeton.edu>
Date: Wed Apr 19 20:19:20 2017 -0400

Add adding_newfile to the index

diff --git a/index.md b/index.md
index 1e9032d..9604383 100644
--- a/index.md
+++ b/index.md
@@ -1 +1,2 @@
- [Getting a repo](./getting_repo.html)
+- [Adding new file](./adding_newfile.html)

commit 5ba1206793de8e1818a387a8919281f47aeca523
Author: David Luet <luet@princeton.edu>
...

Git show
I See what one particular commit changed
git show commit_id

$ git show 5ba1206 # your commit id will be different
commit 5ba1206793de8e1818a387a8919281f47aeca523
Author: David Luet <luet@princeton.edu>
Date: Wed Apr 19 16:58:14 2017 -0400

Add new file and fix getting_repo.md

diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..4c3f7f3
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,2 @@
+*~
+*.html
diff --git a/adding_newfile.md b/adding_newfile.md
new file mode 100644
...

Removing files

I To remove a file from Git, you have to:
1. remove it from your tracked files: tell Git to forget about it.
2. then commit.

I The git rm command does that, and also removes the file from
your working directory.

I If you simply remove the file from your working directory, it shows
up under the Changed but not updated (that is, unstaged)
area of your git status output.

I You may also want to keep the file on your hard drive but not
have Git track it anymore.

git rm --cached

I This is particularly useful if you forgot to add something to your
.gitignore file and accidentally staged it.

I If you remove a file that has been committed, it will still be in the
history of your repo.

Moving/renaming files

$ git mv README.md README
$ git status
On branch master

(use "git reset HEAD <file>..." to unstage)
renamed: README.md -> README

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Branch definition

$ git log --oneline
ed46b26 Add adding_newfile to the index
5ba1206 Add new file and fix getting_repo.md
c1b0ca8 Initial commit

master

c1b0 5ba1 ed46

Creating a new branch

$ git branch devel

master

5ba1

devel

ed46c1b0

HEAD pointer

master

ed46

HEAD

c1b0

devel

5ba1

$ git log --oneline --decorate
ed46b26 (HEAD -> master, devel) Add adding_newfile to the index
5ba1206 Add new file and fix getting_repo.md
c1b0ca8 Initial commit

Switching branches

$ git checkout devel
Switched to branch ’devel’

Switching branches

master

ed46

devel

c1b0

HEAD

5ba1

$ git log --oneline --decorate
ed46b26 (HEAD -> devel, master) Add adding_newfile to the index
5ba1206 Add new file and fix getting_repo.md
c1b0ca8 Initial commit

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Making changes to devel branch

$ ls -1
adding_newfile.md
getting_repo.md
index.md
tohtml.sh
$ micro showing_log.md
$ git add showing_log.md
$ git commit -m "Add showing_log"
$ ls -1
adding_newfile.md
getting_repo.md
index.md
showing_log.md
tohtml.sh

Making changes to devel branch

ed46

HEAD

5ba1

master

9508

devel

c1b0

$ git log --oneline --decorate
9508bd5 (HEAD -> devel) Add showing_log
ed46b26 (master) Add adding_newfile to the index
5ba1206 Add new file and fix getting_repo.md
c1b0ca8 Initial commit

Switching back to master

$ git checkout master
Switched to branch ’master’

ed46

HEAD

5ba1

master

9508

devel

c1b0

Working directory

$ ls -1
adding_newfile.md
getting_repo.md
index.md
tohtml.sh

The file showing_log.md is not in the working directory anymore.

Merge devel into master: Fast-forward

$ git merge devel
Updating ed46b26..9508bd5
Fast-forward
showing_log.md | 5 +++++
1 file changed, 5 insertions(+)
create mode 100644 showing_log.md

c1b0 9508

master

devel

HEAD

5ba1 ed46

Delete branch devel

$ git branch -d devel
Deleted branch devel (was 9508bd5).

master

5ba1

HEAD

ed46 9508c1b0

Another merging situation

ed46

HEAD

5ba1

master

9508

devel

c1b0

$ git log --all --decorate --oneline --graph

* 9508bd5 (devel) Add showing_log

* ed46b26 (HEAD -> master) Add adding_newfile to the index

* 5ba1206 Add new file and fix getting_repo.md

* c1b0ca8 Initial commit

Make changes in master branch

$ micro config.md
$ git add config.md
$ git commit -m "Add config.md"
[master 4c256d3] Add config.md
1 file changed, 7 insertions(+)
create mode 100644 config.md

Branches master and devel have diverged

ed46

devel

master

HEAD

9508

4c25

c1b0 5ba1

$ git log --all --decorate --oneline --graph

* 4c256d3 (HEAD -> master) Add config.md
| * 9508bd5 (devel) Add showing_log
|/

* ed46b26 Add adding_newfile to the index

Merging devel into master: recursive strategy

$ git merge devel

micro starts

Merge branch ’devel’

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.
#
Lines starting with ’#’ will be ignored, and an empty message aborts
the commit.

after editing, exit micro

Merge made by the ’recursive’ strategy.
showing_log.md | 5 +++++
1 file changed, 5 insertions(+)
create mode 100644 showing_log.md

Git created a merge commit — git log

$ git log --all --decorate --oneline --graph

* 4c6cf1e (HEAD -> master) Merge branch ’devel’
|\
| * 9508bd5 (devel) Add showing_log

* | 4c256d3 Add config.md
|/

* ed46b26 Add adding_newfile to the index

* 5ba1206 Add new file and fix getting_repo.md

* c1b0ca8 Initial commit

Merge commit

in

5ba1 ed46

9508

devel

4c25

master

Common
ancestor to merge

into

Commit

Commit
to merge

c1b0

c1b0 5ba1

4c25

ed46

master

9508

4c6c

devel

Another situation—Let’s start over again

ccfc

devel

master

HEAD

c1b0 5ba1 ed46 5856

7b74c

$ git log --all --decorate --oneline --graph

* ccfcc8b (HEAD -> master) Add initial set up to index
| * 7b74cd2 (devel) Add showing logs
|/

* 5856ac1 Add config.md

* ed46b26 Add adding_newfile to the index

* 5ba1206 Add new file and fix getting_repo.md

* c1b0ca8 Initial commit

Merge conflict

$ git checkout master
$ git merge devel
Auto-merging index.md
CONFLICT (content): Merge conflict in index.md
Automatic merge failed; fix conflicts and then commit the result.

$ git show ccfc --name-only
commit ccfcc8bc444289d90f4aeae1a8b819bbe8fe47e0
Author: David Luet <luet@princeton.edu>
Date: Thu Apr 20 10:39:57 2017 -0400

Add initial set up to index
index.md
$ git show 7b74c --name-only
commit 7b74cd2df0ed8177f28d740560938d1cb4f85729
Author: David Luet <luet@princeton.edu>
Date: Thu Apr 20 10:37:58 2017 -0400

Add showing logs
index.md
showing_log.md

Look at index.md

$ cat index.md
- [Getting a repo](./getting_repo.html)
- [Adding new file](./adding_newfile.html)
<<<<<<< HEAD
- [Initial set up](./config.html)
=======
- [Showing logs](./showing_log.html)
>>>>>>> devel

Conflict resolution

I Edit index.md to resolve the conflict

$ micro index.md
- [Getting a repo](./getting_repo.html)
- [Adding new file](./adding_newfile.html)
- [Initial set up](./config.html)
- [Showing logs](./showing_log.html)

I Tell Git that you have resolved the conflict

$ git add index.md

Commit

I commit
$ git commit

I An editor window opens with the message
Merge branch ’devel’

Conflicts:
index.md
#
It looks like you may be committing a merge.
If this is not correct, please remove the file
.git/MERGE_HEAD
and try again.
...

I After you exit the editor, you get the message:
$ git commit
[master eaae48c] Merge branch ’devel’

Merge commit

HEAD

eaae

7b74c

ccfc

c1b0 58565ba1

master

ed46

devel

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Listing all the local branches

$ git branch
devel

* master

Listing all the local branches with last commit

$ git branch -v
devel 7b74cd2 Add showing logs

* master eaae48c Merge branch ’devel’

Listing merged status of branches

I Merged branches
$ git branch --merged

devel

* master

I Branches that have not been merged
$ git checkout -b new_branch
Switched to a new branch ’new_branch’
$ date > newfile.md
$ git add newfile.md
$ git commit -m "Add a newfile"
[new_branch 76666c5] Add a newfile
1 file changed, 1 insertion(+)
create mode 100644 newfile.md

$ git checkout master
Switched to branch ’master’
$ git branch --no-merged
new_branch

Deleting unmerged branches

$ git branch -d new_branch
error: The branch ’new_branch’ is not fully merged.
If you are sure you want to delete it, run \

’git branch -D new_branch’.
$ git branch -D new_branch
Deleted branch new_branch (was 76666c5).

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

New Repository

$ cd
$ git clone https://github.com/luet/05_git_changes.git
$ cd 05_git_changes

git diff

one
two
three

un
deux
trois

english.txt french.txt
one
two

un
deux

english.txt french.txt
one un
english.txt french.txt

cc0c afd5 4465

master

HEAD

$ git log --oneline
4465751 (HEAD -> master) Add 3
afd544d Add 2
cc0c88c Add 1

Checking unstaged changes

Commit 4465 (latest)
$ cat english.txt
one
two
three

Unstaged changes
$ cat english.txt
one
three
four
two

$ git diff english.txt
index 4cb29ea..fb74366 100644
--- a/english.txt
+++ b/english.txt
@@ -1,3 +1,4 @@
one

-two
three

+four
+two

Comparing commits

I Syntax: git diff old_commit..new_commit

I The + and - signs refer to what has been added (+) and
subtracted (-) between old_commit and new_commit.

$ git diff afd544d..4465751
diff --git a/english.txt b/english.txt
index 814f4a4..4cb29ea 100644
--- a/english.txt
+++ b/english.txt
@@ -1,2 +1,3 @@
one
two

+three
diff --git a/french.txt b/french.txt
index 25973d3..3d5dd13 100644
--- a/french.txt
+++ b/french.txt
@@ -1,2 +1,3 @@
un
deux

+trois

Other useful git diff variations

I Looking at the changes in one file between commits:

git diff old_commit..new_commit filename

I Using HEAD to get the latest commit:

git diff 2896f02..HEAD

git show: showing the changes in commit

$ git show afd544d
commit afd544d7dc5e9 [...]
Author: David Luet [...]
Date: [...]

Add 2

diff --git a/english.txt b/english.txt
index 5626abf..814f4a4 100644
--- a/english.txt
+++ b/english.txt
@@ -1 +1,2 @@
one
+two
diff --git a/french.txt b/french.txt
index 49fd79f..25973d3 100644
--- a/french.txt
+++ b/french.txt
@@ -1 +1,2 @@
un
+deux

$ git show afd544d english.txt
commit afd544d7dc5e9 [...]
Author: David Luet [...]
Date: [...]

Add 2

diff --git a/english.txt b/english.txt
index 5626abf..814f4a4 100644
--- a/english.txt
+++ b/english.txt
@@ -1 +1,2 @@
one
+two

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

git checkout <commit>

I e.g.: git checkout af7bedf

I Reverts your entire working directory to the state it was in
commit af7bedf.

I You are in a "detached HEAD" state, which means:
I you can look at your files, even compile and run.
I the master branch is not modified.
I but none of the changes you make will be saved unless you create

a new branch.
I You can think of this commit as a read-only branches.

For more details see git checkout <commit> in Appendix.

git checkout <commit> <file>

I e.g.: git checkout af7bedf french.txt

I Resets the file french.txt to its version in commit af7bedf.
I Keeps the current version of the other files in the working

directory.
I Git:

I will modify the file in the current directory.
I will stage the changes.
I but will not commit the changes.

For more details see git checkout <commit> <file> in
Appendix.

git revert <commit>

I e.g. git revert 720242.
I Revert (undo) commit 720242 by creating a new commit.
I Works well when you want to undo the last commit.
I But things get a little more complicated when you try to undo an

earlier commit:
I git revert uses git merge.
I you often end up with merge conflicts.

I Often it’s just easier to create a commit that fixes the problem by
hand.

See git revert in Appendix.

git reset <commit>

I e.g. git reset a92b610.
I "rewinds" to commit a92b610 by deleting the children commit.

I but leaves the changes in your working directory.
I git reset --hard a92b610.

I deletes all the changes after a92b610.

See git reset in Appendix.

git revert vs. git reset: why is git reset

dangerous?
The big differences between git revert and git reset are:

I git revert
I only reverts one commit.
I creates a new commit to undo changes.
I does not modify past history; it just adds to it.

I git reset:
I does not create new commit, it just deletes old ones.
I modifies the past.
I that becomes a problem if you have already shared the deleted

changes with others, for instance through a shared repository on
GitHub.

I git reset is dangerous use it with caution.

Never use git reset on commits that you have shared publicly:
Others will not be able to push their changes after you do that.

Outline

Git locally
Git Concepts
Git Basic Usage
Introduction to Branching
Merging branches
Branch Management
Inspecting Changes
Working with Older Versions of the Repo: Undoing Changes
Conclusion

Git Locally: Conclusion

I Different states of a file:
I untracked.
I tracked:

I committed.
I modified.
I staged.

I Three main sections:
I .git directory, Git database.
I working directory current version of your files.
I stagging area: what will go into the next commit.

I Create a git repository from scratch: git init.
I Look at the status of the repo: git status.
I Add changes: git add.
I Commit: git commit.

Git Locally: Conclusion

I Looking at history of the repo:
I git log, git show
I git diff

I Important feature of Git: branches:
I create, switch.
I multiple scenarios for merging:

I fast forward
I recursive
I merge conflicts.

I Working with old version of the repository and go back to some
previous version with git revert and git reset.

Outline

Version Control Systems (VCS)

Git locally

Remote Repositories

References

Appendices

Outline

Remote Repositories
Introduction
Creating a Remote Repository From git_cheatsheet
Working With Remote Repositories
Conclusion

What is a remote repository?

I Remote repositories are versions of your project that are not on
your computer.

I They usually include:
I the history.
I branches, called the remote branches.

Remote repository on GitHub

C4

C3

GitHub

C0

devel

C3

master

C0 C1 C2

C4

C1

devel

C2

master

My Computer

Interaction with remote repositories
I You push changes from your computer to the remote.
I You pull changes from the remote to your computer.

C0 C1

GitHub

C2

devel

C4

master

devel

master

PUSH PULL

C3

C0 C1 C2

C4

C3

My Computer

Pushing Commits to the Remote

devel

My Computer

GitHub

master

C3

master

devel

C0 C1 C2

C0 C1 C2

C4

C3

Pushing Commits to the Remote

devel

C0

GitHub

master

master

C1 C2

C3

C3

C0 C1

C4

devel

C2

PUSH

C4

My Computer

Pulling Commits from the Remote

C1 C2

GitHub

C3

master

C0 C1

master

C2

C4

C3

devel

C0

devel

My Computer

Pulling Commits from the Remote

devel

C0

GitHub

master

master

C1 C2

C3

C3

C0 C1

C4

devel

C2

PULL

C4

My Computer

Why use remote repositories?

I backup your work.
I collaborate.
I you can have several remote repositories.

Remote for collaboration

mastermaster

C3

C0 C1 C2

C4

C3

C0 C1 C2

C3

C0 C1 C2

C4

C4

My Computer

devel

GitHub
master

Teammate’s Computer

develdevel

You can have multiple remotes

C3

C3

C0

C4

C1 C2

C4

My Computer

C0

devel

C0 C1 C2
C1

devel

master

master

C2

C4

PRIVATE

GitHub

PUBLIC

master

Outline

Remote Repositories
Introduction
Creating a Remote Repository From git_cheatsheet
Working With Remote Repositories
Conclusion

Publishing your local repository on GitHub

I Now you want the publish the repository git_cheatsheet that
we built earlier with git init.

I So that you can share it with your teammates.
I This is a 3 steps process:

1. Create an empty repository on GitHub.
2. Define a remote repository for your local repository.
3. Push your local repository to the remote repository on GitHub.

GitHub empty repo: Start a project

GitHub empty repo: Create a new repository

GitHub empty repo: Pushing your local repo

Add the remote definition to your local repository

Let’s assume that you just created
https://github.com/luet/git_cheatsheet

$ pwd
/Users/luet/talks/CoDaS-HEP/git_cheatsheet
$ git remote -v
$ git remote add origin git@github.com:luet/\

git_cheatsheet.git
$ git remote -v
origin git@github.com:luet/git_cheatsheet.git (fetch)
origin git@github.com:luet/git_cheatsheet.git (push)

Pushing your repo to GitHub

$ git push --set-upstream origin master
Counting objects: 13, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (11/11), done.
Writing objects: 100% (13/13), 1.42 KiB | 0 bytes/s, done.
Total 13 (delta 1), reused 5 (delta 0)
remote: Resolving deltas: 100% (1/1), done.
To git@github.com:luet/git_cheatsheet.git

* [new branch] master -> master
Branch master set up to track remote branch master from origin.

Outline

Remote Repositories
Introduction
Creating a Remote Repository From git_cheatsheet
Working With Remote Repositories
Conclusion

Pushing your changes to the remote

I Let’s say you have some commits that you have not pushed to
the remote.

I git status tells you:

$ git status
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.

(use "git push" to publish your local commits)
nothing to commit, working directory clean

Pushing your changes to the remote

It’s time to push your work so that your colleagues can use it:
$ git push origin master
X11 forwarding request failed on channel 0
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 666 bytes | 0 bytes/s, done.
Total 5 (delta 0), reused 0 (delta 0)
To git@github.com:luet/git_cheatsheet.git

c10216b..f4b087f master -> master

Updating your local copy of the remote branches

I Now you want to check if someone has pushed some changes
on GitHub.

I First you need to update your copy of the remote origin.

$ git fetch origin
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
From github.com:APC524/git_cheatsheet

f4b087f..f7aa4c4 master -> origin/master

Has something changed?

$ git status
On branch master
Your branch is behind ’origin/master’ by 1 commit, \

and can be fast-forwarded.
(use "git pull" to update your local branch)

nothing to commit, working directory clean

Look at what has changed

$ git diff origin/master
diff --git a/index.md b/index.md
index 70d3d1b..1e9032d 100644
--- a/index.md
+++ b/index.md
@@ -1,2 +1 @@
- [Getting a repo](./getting_repo.html)

-- [Adding a new file](./adding_newfile.html)

Merging the remote branch into your local branch

I So far, you have fetched the remote branch but the changes have
not been merged.

I You merge them with

$ git merge origin/master

Pulling the changes

I Instead of fetching and merging you can use the command git
pull:

git pull = git fetch + git merge

Showing remote repositories

I To see which remote servers you have configured, you can run

$ git remote -v
public https://github.com/luet/git_cheatsheet.git (fetch)
public https://github.com/luet/git_cheatsheet.git (push)
private https://github.com/PrincetonUniversity/\

git_cheatsheet.git (fetch)
private https://github.com/PrincetonUniversity/\

git_cheatsheet.git (push)

Outline

Remote Repositories
Introduction
Creating a Remote Repository From git_cheatsheet
Working With Remote Repositories
Conclusion

Conclusion

I Create and manage branches to develop your code while
keeping a stable production version.

I Exchange commits between branches.
I Export your developments on GitHub for collaborative

development and backup.

Outline

Version Control Systems (VCS)

Git locally

Remote Repositories

References

Appendices

Outline

References
Git Remote Repository Hosting
Graphical User Interfaces
Further Learning

Git Remote Repository Hosting

I GitHub:
I Free unlimited public repo.
I Free unlimited private repo (pricing):

I limited to 3 collaborators. But as students, you can get a Student
Pack.

I You should setup some ssh keys, it will make your life easier:
GitHub Help.

I GitLab: free, unlimited, supports Git LFS (Large File Storage).
I BitBucket:

I free for everyone up to 5 users.
I free academic subscription (.edu email).

I On your own server through ssh (more advanced).

https:github.com
https://github.com/pricing
https://help.github.com/categories/ssh/
https://gitlab.com/
https://git-lfs.github.com/
https://bitbucket.org/
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

Outline

References
Git Remote Repository Hosting
Graphical User Interfaces
Further Learning

Graphical User Interfaces

I gitk:
I simple but powerful.
I almost always available on Linux machines (nobel).
I the missing gitk documentation: this is a good, concise

documentation.

I Atlassian SourceTree.
I GitHub Desktop.
I On Windows: TortoiseGit.

https://git-scm.com/docs/gitk
http://gitolite.com/gitk.html
https://www.atlassian.com/software/sourcetree
https://desktop.github.com/
https://tortoisegit.org/

Outline

References
Git Remote Repository Hosting
Graphical User Interfaces
Further Learning

Further Learning

I The best way to learn Git is to start using it. Experiment with it on
your local machine.

I Scott Chacon and Ben Straub Pro Git (excellent book):
I Chapters 1,2 and 3 for basic Git usage.
I Chapter 6 for GitHub.

I Git everyday
I Individual Developer (Standalone)
I Individual Developer (Participant)

I An interesting interactive Git cheatsheet
I GitHub Tutorials
I Chacon’s Git tutorial:

I Part 1
I Part 2

I Atlassian Tutorials
I GitHub Guides

https://git-scm.com/book/en/v2
https://git-scm.com/docs/giteveryday
https://git-scm.com/docs/giteveryday#_individual_developer_standalone_a_id_standalone_a
https://git-scm.com/docs/giteveryday#_individual_developer_participant_a_id_participant_a
http://ndpsoftware.com/git-cheatsheet.html
https://try.github.io/
http://schacon.github.io/git/gittutorial.html
http://schacon.github.io/git/gittutorial-2.html
https://www.atlassian.com/git/tutorials/
https://guides.github.com/

Outline

Version Control Systems (VCS)

Git locally

Remote Repositories

References

Appendices

Outline

Appendices
git checkout
git revert
git reset
git submodule

Checking out an old commit

english.txt french.txt

master

HEAD

one
two
three

un
deux
trois

english.txt french.txt
one
two

un
deux

english.txt french.txt
one un
english.txt french.txt

3786 af7b 85f4 88ee

one
two
three
four

un
deux
trois
quatre

$ git log --oneline
596f954 (HEAD -> master, origin/master, origin/HEAD) Add 4
4465751 Add 3
afd544d Add 2
cc0c88c Add 1

git checkout <commit>

We want to look at commit afd544d
$ git checkout afd544d
Note: checking out ’afd544d’.

You are in ’detached HEAD’ state. You can look
around, make experimental changes and commit them, and you
can discard any commits you make in this state without
impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you
create, you may do so (now or later) by using -b with the
checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at afd544d... Add 2

Detached HEAD

english.txt french.txt

masterHEAD

one
two
three

un
deux
trois

english.txt french.txt
one
two

un
deux

english.txt french.txt
one un
english.txt french.txt

3786 af7b 85f4 88ee

one
two
three
four

un
deux
trois
quatre

$ git branch

* (HEAD detached at afd544d)
master

Detached HEAD

$ cat english.txt
one
two

$ cat french.txt
un
deux

$ git diff HEAD..master english.txt
diff --git a/english.txt b/english.txt
index 814f4a4..f384549 100644
--- a/english.txt
+++ b/english.txt
@@ -1,2 +1,4 @@
one
two

+three
+four

What can you do in detached HEAD state?

I Run the code.
I Compile the code.
I For instance, to go back in history to find out when a bug was

introduced.
I You can commit.

I those commits won’t change the code in the branch master
I but they won’t be saved if you don’t create a new branch.

Switching back to branch master

$ git branch

* (HEAD detached at afd544d)
master

$ git checkout master
Previous HEAD position was afd544d... Add 2
Switched to branch ’master’
Your branch is up to date with ’origin/master’.
$ git branch

* master

If you don’t create a new branch, the detached HEAD state
disappears.

Creating a new branch from the detached HEAD state

I If you want to keep changes you make in the detached HEAD
state, you need to create a new branch, otherwise your changes
to the detached HEAD state will be lost.

$ git checkout afd544d
...
$ git branch

* (HEAD detached at afd544d)
master

$ git checkout -b old_version
Switched to a new branch ’old_version’
$ git branch

master

* old_version

I Think of git checkout <commit> as a way to look at
previous commits and see what has changed.

git checkout <commit> as an undo function

master

HEAD

one
two
three

un
deux
trois

english.txt french.txt
one
two

un
deux

english.txt french.txt
one un
english.txt french.txt

3786 af7b 85f4 88ee

old_version

one
two
three
four

un
deux
trois
quatre

english.txt french.txt

git checkout <commit> <file>

english.txt french.txt

master

HEAD

one
two
three

un
deux
trois

english.txt french.txt
one
two

un
deux

english.txt french.txt
one un
english.txt french.txt

3786 af7b 85f4 88ee

one
two
three
four

un
deux
trois
quatre

We want to:
I reset the file french.txt to its version in commit afd544d.
I keep the latest version of english.txt.

Reverting one file

$ git checkout afd544d french.txt
$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: french.txt

Git has:
I modified the file french.txt.
I staged the modifications.

What has changed?

$ git diff --cached french.txt
diff --git a/french.txt b/french.txt
index 628ffa8..25973d3 100644
--- a/french.txt
+++ b/french.txt
@@ -1,4 +1,2 @@
un
deux

-trois
-quatre

Git modified the file french.txt so that it is the same as it was in
commit afd5.

To keep the changes, you need to create a new
commit

$ git commit -m "Revert french.txt to commit afd5"
[master 09919bb] Revert french.txt to commit afd5
1 file changed, 2 deletions(-)

quatre

french.txt

two
three

88ee

four

master

english.txt

HEAD

french.txt
un
deux

french.txt
un
deux

one
two
three

un
deux
trois

english.txt french.txt
one
two

english.txt
one un
english.txt french.txt

3786 af7b 85f4 029a

oneone
two
three
four

un
deux
trois

english.txt

Outline

Appendices
git checkout
git revert
git reset
git submodule

Reverting a commit by creating a new commit: git
revert

$ git log --oneline
596f954 (HEAD -> master) Add 4
4465751 Add 3
afd544d Add 2
cc0c88c Add 1

I We want to revert (undo) the last commit

$ git revert 596f954
[a window pops up]

git revert: reverting one commit

Revert "Add 4"

This reverts commit 596f9548c832ca6a75ca5ac81c165829f84f9fa7.

Please enter the commit message for your changes. Lines starting
with ’#’ will be ignored, and an empty message aborts the commit.
#
On branch master
Your branch is up to date with ’origin/master’.
#
Changes to be committed:
modified: english.txt
modified: french.txt
#
[exit the text editor]
[master 0138210] Revert "Add 4"
2 files changed, 2 deletions(-)

git revert creates a new commit that is a "mirror"
of the original commit

$ git diff 596f954^1..596f954
iff --git a/english.txt b/english.txt
index 4cb29ea..f384549 100644
--- a/english.txt
+++ b/english.txt
@@ -1,3 +1,4 @@
one
two
three
+four
diff --git a/french.txt b/french.txt
index 3d5dd13..628ffa8 100644
--- a/french.txt
+++ b/french.txt
@@ -1,3 +1,4 @@
un
deux
trois
+quatre

$ git diff 0138210^1..0138210
diff --git a/english.txt b/english.txt
index f384549..4cb29ea 100644
--- a/english.txt
+++ b/english.txt
@@ -1,4 +1,3 @@
one
two
three

-four
diff --git a/french.txt b/french.txt
index 628ffa8..3d5dd13 100644
--- a/french.txt
+++ b/french.txt
@@ -1,4 +1,3 @@
un
deux
trois

-quatre

Comments on git revert

I Works well when you want to undo the last commit.
I But things get a little more complicated when you try to undo an

earlier commit:
I git revert uses git merge.
I you often end up with merge conflicts.

I Often it’s just easier to create a commit that fixes the problem by
hand.

Outline

Appendices
git checkout
git revert
git reset
git submodule

Reverting to a commit by deleting children commit:
git reset

$ git log --oneline
596f954 (HEAD -> master) Add 4
4465751 Add 3
afd544d Add 2
cc0c88c Add 1

You want to reset the repo to commit afd544d.
$ git reset afd544d
Unstaged changes after reset:
M english.txt
M french.txt

git reset new history

one
two
three

un
deux
trois

english.txt
one
two

un
deux

english.txt french.txt
one un
english.txt french.txt

one
two
three
four

un
deux
trois
quatre

english.txt french.txtfrench.txt

master

HEAD

f3dd8f42a92bf2cf

$ git log --oneline
afd544d (HEAD -> master) Add 2
cc0c88c Add 1

What are those unstaged changes?
$ git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: english.txt
modified: french.txt

no changes added to commit (use "git add" and/or "git commit -a")
$ cat english.txt
one
two
three
four

$ cat french.txt
un
deux
trois
quatre

I git reset rewinds the commits but leaves the changes in your
working directory.

I The default option is git revert --mixed, this is what we
have been using here.

Removing the changes from the working directory

$ git log --oneline
596f954 (HEAD -> master) Add 4
4465751 Add 3
afd544d Add 2
cc0c88c Add 1
$ git reset --hard afd544d
HEAD is now at afd544d Add 2
$ git status
On branch master
nothing to commit, working tree clean

I All the changes from 4465 and 596f are gone.
I From Git’s point of view it’s as if they had never existed: they

have been deleted from the history of the repo.

git revert vs. git reset: why git reset is
dangerous.

The big differences between git revert and git reset are:
I git revert

I only reverts one commit.
I creates a new commit to undo changes.
I does not modify past history; it just adds to it.

I git reset:
I does not create new commit, it just deletes old ones.
I modifies the past.
I that becomes a problem if you have already shared the deleted

changes with others, for instance through a shared repository on
GitHub.

I git reset is dangerous use it with caution.

Never use git reset on commits that you have shared publicly:
Others will not be able to push their changes after you do that.

Outline

Appendices
git checkout
git revert
git reset
git submodule

git submodule

I This is a good tutorial on git submodule: https://git.
wiki.kernel.org/index.php/GitSubmoduleTutorial

I And this is the section on submodule in the Pro-Git book:
https:
//git-scm.com/book/en/v2/Git-Tools-Submodules

https://git.wiki.kernel.org/index.php/GitSubmoduleTutorial
https://git.wiki.kernel.org/index.php/GitSubmoduleTutorial
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules

	Version Control Systems (VCS)
	Definition
	Distributed VCS

	Git locally
	Git Concepts
	Git Basic Usage
	Introduction to Branching
	Merging branches
	Branch Management
	Inspecting Changes
	Working with Older Versions of the Repo: Undoing Changes
	Conclusion

	Remote Repositories
	Introduction
	Creating a Remote Repository From git_cheatsheet
	Working With Remote Repositories
	Conclusion

	References
	Git Remote Repository Hosting
	Graphical User Interfaces
	Further Learning

	Appendices
	git checkout
	git revert
	git reset
	git submodule

