
INTRODUCTION TO PERFORMANCE TUNING
AND OPTIMIZATION TOOLS

Bei Wang
beiwang@princeton.edu

Princeton University

Third Computational and Data Science School for HEP (CoDaS-HEP 2019)
July 25, 2019

Outlines

• Basic Concepts in Performance Tuning
• What is performance tuning and why it matters?
• Performance tuning workflow
• Typical pitfalls wrt. single node performance
• Performance tool overview

• Performance Tools: Demos and Hands-on
• How to run basic timing experiments and what they can do
• How to use hardware counters
• How to deal with parallelism (vectorization and threads)

• Goals
• Provide basic guidance on how to understand the performance of a code using tools
• Provide starting point for performance optimizations

BASIC CONCEPTS IN PERFORMANCE TUNING

What Is and Why Performance Tuning?

• What is performance tuning?
• The process of improving the efficiency of an application to better utilize a given

hardware resource
• Requires some understanding about the performance features of the given

hardware (see CoDaS’s talk “what every physicist should know about computer
architecture” on Monday)

• Identifying bottlenecks, determining efficiency and eliminating the bottlenecks if
possible

• Incrementally complete tuning until the performance requirements are satisfies

• Why performance matters?
• Energy efficiency
• Today’s applications only use a fraction of the machine due to
• Complex architectures
• Mapping applications onto architectures is hard

Performance Tuning Workflow

prepare

measure

analyzehypothesize

modify

• Choose an workload which is
measurable, representative, static
and reproducible, and quantifiable

• Record code generation, compiler
version, compiler flags, input
parameters, core count, affinity etc

• Change only one thing at a
time

• Consider the ease (difficulty)
of implementation

• Keep track of all changes
• Apply regression test to

ensure correctness after each
change

• Remember: fast computing
of wrong result is completely
irrelevant

Measure
• What to measure? Choose metrics which quantify the performance of your code

• Time, energy etc
• How to measure?

• Linux “time” command
• Get an idea of overall run time, but can’t pin performance bottlenecks

• Put timer (e.g., gettimeofday, MPI_Wtime, omp_get_wtime) around loops/functions
• Works for small code base to identify hotspots, but hard to maintain and require significant priori knowledge

• Performance tools (recommended)
• Collect a lot data with varying granularity, cost and accuracy
• Trace back to source code (use –g compiler flag)
• How to collect

• Sometime there is a learning curve to master the tools

Sampling
• Records system state at periodic intervals
• Useful to get an overview
• Low and uniform overhead
• Ex. Profiling

Instrumentation
• Records all events
• Provide detailed per event information
• High overhead for request events
• Ex. Tracing

Performance Tools Overview

• Basic OS tools
• Time
• Gprof/perf
• Valgrind/callgrind

• Hardware counter
• PAPI API & tool set

• Community open source
• HPCToolkit (Rice Univ.)
• TAU (U of Oregon)
• Open|SpeedShop (Krell)

• Commercial products
• ARM MAP
• Intel VTune Amplifier
• Intel Advisor
• Intel Trace Analyzer

• Vendor supplied (free)
• CrayPat
• Nvprof/pgprof

No tool can do everything. Choose the right tool for the right task

Typical Pitfalls wrt. Performance: Sequential

• Where am I spending my time?
• Find the hotspots

• Is my code computational or memory bounded?
• Memory bounded
• Data locality
• TLB misses
• L1/L2/L3 $ misses

• Computational bounded
• Fast math (see CoDaS’s talk “Floating Point Arithmetic” on Wed)
• Avoid type conversion

• Vectorization efficiency

• Is my I/O efficient?

Registers L1$ L2$ LLC DRAM
Speed (cycle) 1 ~4 ~10 ~30 ~200
Size < KB ~32KB ~256KB ~35MB 10-100GB

float x=3.14; //bad: 3.14 is a double
float s=sin(x); //bad: sin() is a double
precision function
long v=round(x); //bad: round takes
and returns double

float x=3.14f; //good: 31.4f is a float
float s=sinf(x); //good: sin() is a
single precision function
long v=lroundf(x); //good: lroundf()
takes float and returns long

Typical Pitfalls wrt. Performance: Multithreading

• Load imbalance
• False sharing
• Occurs when threads on different processors modify

variables that reside on the same cache line
• Caused by coherent caches
• Cache line is 64 bytes wide

• Insufficient parallelism
• Synchronization
• Avoid synchronization with private thread storage

• Non-optimal memory placement
• Thread affinity
• Allocation on first touch

https://software.intel.com/en-us/articles/avoiding-
and-identifying-false-sharing-among-threads

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

LINUX TOOL: Perf

PERF

• Perf is a performance analyzing tool in Linux, available in version 2.6.31
• How does it work

• perf record: measure and save sampling data for a single program
• -g: enable call-graph (callers/callee information)

• perf report: analyze the file generated by perf record, can be flat profile or graph
• -g: enable call-graph (callers/callee information)

• perf list: list available events for measurement
• Support a list of hardware and software events

• perf stat: measure total event count for a single program
• -e: event names provided in perf list

• etc

• When compiling the code, use the following flags for easier interpretation
• -g: need debug symbols in order to annotation source
• -fno-omit-frame-pointer: provide stack chain/backtrace

Example: Matrix-Matrix Multiplication
Two versions of 2D matrix-matrix multiplication

Set up Adroit for Hands-on

• How to log into the Adroit system
• Login information was distributed on Monday

• Download the exercises from Github
• git clone https://github.com/beiwang2003/codas_perftools.git

• Move to the codas_perftools directory
• cd $HOME/codas_perftools

• Load environment module
• module load rh/devtoolset/7

Hands-on: Find Hot Spots Using Perf

Press “A”

Press “A”

• Compile the code: g++ -g -fno-omit-frame-pointer -O3 -DNAIVE matmul_2D.cpp -o mm_naive.out
• Collect profiling data: perf record –g ./mm_naive.out 500
• Open the result: perf report –g

Hands-on: Loop Interchange Optimization

• The perf stat command instruments and
summarizes selected CPU counters
1. Compile the code
• g++ -g -fno-omit-frame-pointer -O3 -DNAIVE

matmul_2D.cpp -o mm_naive.out
2. Run perf stat
• perf stat -e cpu-cycles,instructions,L1-dcache-loads,L1-

dcache-load-misses,L1-dcache-stores ./mm_naive.out
500

3. Record the numbers for each events
4. Compile the code
• g++ -g -fno-omit-frame-pointer -O3 -

DINTERCHANGE matmul_2D.cpp -o
mm_interchange.out

5. Run perf stat
• perf stat -e cpu-cycles,instructions,L1-dcache-loads,L1-

dcache-load-misses ./mm_interchange.out 500
6. Compare the numbers for both cases

• The perf list command lists all available CPU counters:

• Check man perf_event_open to see what does each event
measure

Results Comparison (GCC)

• The number of CPU cycles is much lowers for interchange, reflecting its shorter elapsed time
• The number of instructions are half in interchange
• Interchange has substantial fewer LL1 load misses, which indicates better data locality

NAIVE INTERCHANGE

Follow up exercise: change matrix dimension to 1000x1000. This will trigger more LLC and TLB misses.

OPEN|SpeedShop

OpenSpeedShop (O|SS)
• Open source multi-platform performance tool

• Available on Intel, AMD, ARM, Power PC, Power 8, GPU based systems
• Built on top of a list of community tools, e.g., Dyninst and MRNet from UW, libmonitor from Rice, and

PAPI from UTK
• O|SS gathers

• High level summary: cbtfsummary “normal app run script”
• Program counter sampling: osspcsamp “…”
• Call path analysis: ossusertime “…”
• Hardware performance counters: osshwcsamp “…”
• OpenMP profiling and analysis: ossomptp “…”
• MPI profiling and tracing: ossmpi[p][t] “…”
• I/O profiling and tracing: ossio[p][t] “…”
• Memory analysis: ossmem “…”
• Nvidia CUDA tracing and analysis

• O|SS displays with
• GUI: openss –f ./*.openss
• CLI: openss –cli –f ./*.openss

openspeedshop.org

Osspcsamp: Flat Profile Overview
• Start with flat profile overview
• Flat profile: time spent per functions or per statements
• Collect profiling data: osspcsamp “./mm_naive.out 1000” (this will generate a *.openss file)
• Open the result in GUI: openss -f ./mm_naive.out-pcsamp-0.openss

Click “S”

Double click the highlighted

Ossusertime: Call Graph Analysis
• Flat profile does not help you:

• Distinguish routines called from multiple callers
• Understand the call invocation history

• Stack traces: caller/callee relationships, inclusive/exclusive time
• Collect profiling data: ossusertime “./mm_naive.out 1000” (this will generate a *.openss file)
• Open the result in GUI: openss -f ./mm_naive.out-usertime-0.openss

Click “C”Click ”D”Click “B”

Osshwcsamp: Hardware Performance Counters

• Timing information shows where you spend your time. BUT, it doesn’t show you why
• Hardware performance counters: PAPI events (use papi_avail to check available events)
• Collect profiling data: osshwcsamp “./mm_naive.out 1000” PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_L1_DCM

(up to 6 events, this will generate a *.openss file)
• Open the result in CLI: openss –cli –f ./mm_naive.out-hwcsamp-0.openss
• View the result with: openss>>expview

Ossomptp: OpenMP Parallel Region

• For parallel execution, is there any load imbalance issue? How do you find the potential
cause?

• OMPT API: record task time, idleness, barrier, wait barrier per OpenMP parallel region
• Let’s look at the matrix-matrix example, but now we only compute the result for the

upper triangular

• Compile the code: g++ -g -O3 –fopenmp –DTRIANGULAR matmul_2D.cpp -o
mm_triangular_omp.out (export OMP_NUM_THREADS=4)

• Collect profiling data: ossomptp “./mm_triangular_omp.out 1000” (this will generate a
*.openss file)

Ossomptp: OpenMP Parallel Region

• Open the result in GUI: openss –f ./mm_triangular_omp.out-omptp-0.openss

Click “B”

Using OMP Clause “schedule(dynamic)”

WAIT_BARRIER time has reduced
significantly (from 5.6s to 0.35s)

Another Important Focus: Efficient Vectorization

• The CoDaS’s talk “Vector Parallelism for Kalman-Filter-Based Particle Tracking
on Multi- and Many-Core Processors” has covered many important aspects of
vectorization

• This lecture will mainly focus on how to examine vectorization efficient
using tools, e.g., Intel Advisor

• Analysis tools:
• Compiler vectorization report
• GCC: -fopt-info-vec
• Intel: -qopt-report=5

• Look at assembly code
• Measure performance with PAPI counters, e.g., PAPI_DP_OPS, PAPI_VEC_DP etc
• Intel Advisor

Intel Advisor

Vectorization Advisor & Roofline

• Vectorization advisor
• Provide vectorization information from vectorization report
• Identify the hotspots where your efforts pay off the most
• Provide call graph information
• Identify the performance and vectorization issues
• Check memory access pattern
• Check dependencies
• More …

• Roofline
• How much performance is being left on the table
• Where are the bottlenecks
• Which can be improved
• Which are worth improving

Workflow of Vectorization Advisor

• Survey: find the vectorization information for loops and provide suggestions for
improvement

• Trip Counts: generate a Roofline Chart
• Memory Access Patterns (MAP): see how you access the data
• Dependencies: determine if it is safe to force vectorization

Survey

Trip Counts

Dependencies Memory Access Pattern

Select loops with potential dependencies or inefficient memory access pattern

Survey Analysis
• Compile the code: icpc -g -O3 –xhost -DINTERCHANGE matmul_2D.cpp -o mm_interchange_icpc.out
• Collect the survey data: advixe-cl -c survey -project-dir mm-advisor -- ./mm_interchange_icpc.out 1000
• Open the result in GUIL: advixe-gui mm-advisor

Click “survey & roofline"

Double click the highlighted loop

Dependency Analysis
• Check dependency: advixe-cl -c dependencies -mark-up-list=3 -project-dir ./mm-advisor --

./mm_interchange_icpc.out 1000
• Open the result in GUI: advixe-gui mm-advisor

Resolve Point Aliasing

• We can help the compiler to resolve the dependency complaining caused by point
aliasing by:
• “restrict” keyword and -restrict -std=c90 compiler flag
• #pragma (GCC) ivdep
• #pragma omp simd

• We choose OpenMP simd pragma here

Re-run Survey Analysis

• Compile the code: icpc -g -O3 –xhost –qopenmp-simd -DINTERCHANGE matmul_2D.cpp -o
mm_interchange_icpc.out

• Collect the survey data: advixe-cl -c survey -project-dir mm-advisor -- ./mm_interchange_icpc.out 1000
• Open the result in GUI: advixe-gui mm-advisor

Using 512-bit ZMM register
• Compile the code: icpc -g -O3 -xhost -qopenmp-simd -qopt-zmm-usage=high -DINTERCHANGE

matmul_2D.cpp -o mm_interchange_icpc.out
• Collect the survey data: advixe-cl -c survey -project-dir mm-advisor -- ./mm_interchange_icpc.out 1000
• Open the result in GUI: advixe-gui mm-advisor

Trip Counts Analysis

• Collect the trip counts data
• advixe-cl -c tripcounts -project-dir mm-advisor -- ./mm_interchange_icpc.out 1000
• Note: we need to first carry out “survey” analysis and use the same project directory for “tripcounts”

• Trip Counts analysis shows you
loop trip counts and call counts
• The best vectorization

requires the scalar trip count
to be divisible by the vector
length, or you get remainder
loops

• Call counts amplify the
importance of tuning a given
loop

Loops with peels
and remainders
can be expanded

Show number of trip
counts for body, peeled
and remainders

Roofline Chart

• Trip counts analysis also collects FLOPS (FLoating-point Operations Per Seconds)
• Collecting FLOPS allows the plotting of a Roofline chart

O0

• A visual representation of application
performance in relation to hardware
limitations, including memory
bandwidth and computational peaks

• The horizontal axis is Arithmetic
Intensity, a measurement of FLOPs per
byte accessed. The vertical axis is
performance.

• Provide performance insights
• Highlights poor performing loops
• Shows performance “headroom”

for each loop
• Which can be improved
• Which are worth improving

• Shows likely causes of bottlenecks
• Suggest next optimization steps

N-Body Problem

The example code assumes m=1 for all particles

Hands-on: Explore Survey Analysis

Windows 1
• Log into Adroit
• ssh –l <user> adroit.princeton.edu

• Load environment modules
• module load intel

• Compile the code
• icpc -g -O2 -xhost -qopt-zmm-usage=high -

qopenmp nbody.cpp -o nbody.out
• Run the provided script to submit a

Advisor wrapped job to the scheduler
• ./submit_to_scheduler

Windows 2
• Log into Adroit with X11 forwarding
• ssh –Y -C <user>@adroit.princeton.edu
• Will need local xserver (XQuartz for OSX,

Xming for Windows)
• Load environment modules
• module load intel intel-advisor

• Open the resulting directory with Intel
Advisor
• advixe-gui nbody-advisor
• Click “Show My Result”

• Explore “Survey” report

Any Performance Issue?

Revisit N-Body Code

Re-run Survey Analysis

Windows 1
• Compile the code
• icpc -g -O2 -xhost -qopt-zmm-usage=high

-qopenmp –DSoA -DNo_FP_Conv
nbody.cpp -o nbody.out

• Re-run the provided script to submit a
Advisor wrapped job to the scheduler
• ./submit_to_scheduler

Windows 2
• Re-open the resulting directory with Intel

Advisor
• advixe-gui nbody-advisor
• Click “Show My Result”

• Explore “Survey” report

Any Remaining Performance Issue?

Follow up: try add –DAligned
to the compiler flag and check
the result with Advisor

Create Snapshot for Comparison

Roofline Comparison

• Can you make a roofline chart for the original code and the optimized one?

Intel VTune

Intel VTune Amplifier

• Accurate data
• Hotspot
• Processor microarchitecture
• Memory access
• Threading
• I/O

• Flexible
• Linux, Windows and Mac OS analysis GUI
• Link data to source code and assembly
• Easy set-up, no special compiles

• Shared memory only
• Serial
• OpenMP
• MPI on a single node

A Rich Set of Predefined Analysis Types

• Hotspots: what functions use most
time?

• Microarchitecture Exploration:
hardware-level performance data

• Memory Access: identify memory-
related issues

• HPC Performance Characterization:
overview of CPU, memory and FPU
utilization

• Threading: Identify potential
parallelization opportunities/issues

Hotspots

Microarchitecture Exploration

Threading

Suggest Next Steps

• 1. L2 and L3 cache issue: try blocking technique
• 2. Thread load imbalance: try “#pragma omp parallel for schedule(dynamic)” for the

outer most loop
• 3. Vectorization: try “#pragma omp simd” for the inner most loop

References

• “Introduction to Performance Tuning & Optimization Tools”, CoDaS-HEP 2018, Ian
Cosden, https://github.com/cosden/CoDaS-HEP-Perf-Tuning

• “Compiling and Tuning for Performance using Intel Advanced Vector Extensions 512”,
SC18, Intel Speakership Tutorial, Carlos Rosales-Fernandez

• ”How to Analyze the Performance of Parallel Codes 101”, SC18 Tutorial,
https://openspeedshop.org/2018/11/sc18-how-to-analyze-the-performance-of-
parallel-codes-101/

• “Vector Parallelism on Multi-Core Processors”, CoDas-HEP 2019, Steve Lantz
• Perf: https://perf.wiki.kernel.org/index.php/Tutorial,

http://www.brendangregg.com/perf.html

https://github.com/cosden/CoDaS-HEP-Perf-Tuning
https://openspeedshop.org/2018/11/sc18-how-to-analyze-the-performance-of-parallel-codes-101/
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html

