
Vector Parallelism on Multi-Core Processors

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 25, 2019

PART I:

Vectorization Basics

(author: Steve Lantz)

Vector Parallelism: Motivation

• CPUs are no faster than they were a decade ago
– Power limits! “Slow” transistors are more efficient, cooler

• Yet process improvements have made CPUs denser
– Moore’s Law! Add 2x more “stuff” every 18–24 months

• One way to use extra transistors: more cores
– Dual-core Intel chips arrived in 2005; counts keep growing
– 6–28 in Skylake-SP (doubled in 2-chip Cascade Lake module)

• Another solution: SIMD or vector operations
– First appeared on Pentium with MMX in 1996
– Vectors have ballooned: 512 bits (16 floats) in Intel Xeon
– Can vectorization increase speed by an order of magnitude?

3

Die shot of 28-core Skylake-SP
Source: wikichip.org

What Moore’s Law Buys Us, These Days…

4

A Third Dimension of Scaling

• Along with scaling out and up, you can “scale deep”
– Arguably, vectorization can be as important as multithreading

• Example: Intel processors in TACC Stampede2 cluster

– 1736 Skylake-SP + 4200 Xeon Phi (KNL) nodes; 48 or 68 cores each

– Each core can do up to 64 operations/cycle on vectors of 16 floats

5

64 ops/cycle/core

48 or 68 cores per nodeIn the cluster:

5936 nodes

How It Works, Conceptually

6

SIMD: Single Instruction, Multiple Data

1 2 3 4

5 6 7 8

6 8 10 12

Three Ways to Look at Vectorization

1. Hardware Perspective: Run vector instructions

involving special registers and functional units

that allow in-core parallelism for operations on

arrays (vectors) of data.

2. Compiler Perspective: Determine how and when

it is possible to express computations in terms of

vector instructions.

3. User Perspective: Determine how to write code

with SIMD in mind; e.g., in a way that allows the

compiler to deduce that vectorization is possible.

7

Hardware Perspective

• SIMD = Single Instruction, Multiple Data
– Part of commodity CPUs (x86, x64, PowerPC) since late ’90s

• Goal: parallelize computations on vector arrays
– Line up operands, execute one op on all simultaneously

• SIMD instructions have gotten quicker over time
– Initially, several cycles for execution on small vectors
– Intel AVX introduced pipelining of some SIMD instructions
– Now: multiply-and-add large vectors on every cycle

• Intel’s latest: Knights Landing, Skylake-SP, Cascade Lake
– 2 VPUs (vector processing units) per core, in most models
– 2 ops/VPU if they do FMAs (Fused Multiply-Add) every cycle

8

Partial block diagram of SKL-SP core
Source: wikichip.org

Evolution of Vector Registers, Instructions

• A core has 16 (SSE, AVX) or 32 (AVX-512) vector registers
• In each cycle, VPUs can access registers, do FMAs (e.g.)

9

8
16

zmm0

AVX-512 (KNL, 2016; prototyped by KNC, 2013)

4
8

ymm0

AVX, 256-bit (2011)

2
4

xmm0

SSE, 128-bit (1999) 64-bit double
32-bit float

Peak Flop/s, and Why It’s (Almost) a Fiction

• Peak flop/s (FLoating-point OPs per second) is amplified by vector FMAs
• Example: Intel Xeon Gold 6130 “Skylake-SP” @ 2.1 GHz

– (2 x 16 flop/VPU) x (2 VPUs/core) x (16 cores) x 2.1 GHz = 2150 Gflop/s (?)
• Dubious assumption #1: data are loaded and stored with no delay

– Implies heavy reuse of data in vector registers, perfect prefetching into L1 cache
• Dubious assumption #2: code is perfectly vectorized

– Otherwise the scalar fraction of work S limits the first factor to 1/S (Amdahl’s Law)
• Dubious assumption #3: no slow operations like division, square root
• Dubious assumption #4: clock rate is fixed

– If all cores are active, clock is actually throttled to 1.9 GHz to prevent overheating

10

Instructions Do More Than Just Flops…

• Data Access: Load/Store, Pack/Unpack, Gather/Scatter
• Data Prefetch: Fetch, but don’t load into a register
• Vector Rearrangement: Shuffle, Bcast, Shift, Convert
• Vector Initialization: Random, Set
• Logic: Compare, AND, OR, etc.
• Math: Arithmetic, Trigonometry, Cryptography, etc.
• Variants of the Above… Mask, Swizzle, Implicit Load…

– Combine an operation with data selection or movement

• This is why AVX-512 comprises over 4000 instructions

11

Extension CSL SKL KNL

AVX512F
Foundation

X X X

AVX512CD
Conflict Det.

X X X

AVX512BW
Byte & Word

X X

AVX512DQ
Dble. & Quad.

X X

AVX512VL
Vector Length

X X

AVX512PF
Prefetch

X

AVX512ER
Exp. & Recip.

X

AVX512VNNI
Neural Net.

X

How Do You Get Vector Speedup?

• Program the key routines in assembly?

– Ultimate performance potential, but only for the brave

• Program the key routines using intrinsics?

– Step up from assembly; useful in spots, but risky

ü Link to an optimized library that does the heavy lifting

– Intel MKL, e.g., written by people who know all the tricks

– BLAS is the portable interface for doing fast linear algebra

ü Let the compiler figure it out

– Relatively “easy” for user, “challenging” for compiler

– Compiler may need some guidance through directives

– Programmer can help by using simple loops and arrays

12

Compiler Perspective

• Think of vectorization in terms of loop unrolling
– Unroll by 4 iterations, if 4 elements fit into a vector register

for (i=0; i<N; i++) {
c[i]=a[i]+b[i];

}

for (i=0; i<N; i+=4) {
c[i+0]=a[i+0]+b[i+0];
c[i+1]=a[i+1]+b[i+1];
c[i+2]=a[i+2]+b[i+2];
c[i+3]=a[i+3]+b[i+3];

}

Load a(i..i+3)
Load b(i..i+3)
Do 4-wide a+b->c
Store c(i..i+3)

13

Loops That the Compiler Can Vectorize

Basic requirements of vectorizable loops:

• Number of iterations is known on entry
– No conditional termination (“break” statements, while-loops)

• Single control flow; no “if” or “switch” statements
– Note, the compiler may convert “if” to a masked assignment!

• Must be the innermost loop, if nested
– Note, the compiler may reorder loops as an optimization!

• No function calls but basic math: pow(), sqrt(), sin(), etc.
– Note, the compiler may inline functions as an optimization!

• All loop iterations must be independent of each other

14

Compiler Options and Optimization

• Intel compilers start vectorizing at optimization level -O2
– Default is SSE instructions, 128-bit vector width
– To tune vectors to the host machine: -xHost
– To optimize across objects (e.g., to inline functions): -ipo
– To disable vectorization: -no-vec

• GCC compilers start vectorizing at optimization level -O3
– Default for x86_64 is SSE (see output from gcc -v, no other flags)
– To tune vectors to the host machine: -march=native
– To optimize across objects (e.g., to inline): -fwhole-program
– To disable vectorization: -fno-tree-vectorize (after -O3)

• Why disable or downsize vectors? To gauge their benefit!

15

Machine-Specific Compiler Options

• Intel compilers
– Use -xCORE-AVX2 to compile for AVX2, 256-bit vector width
– Use -xCOMMON-AVX512 to compile with AVX-512F + AVX-512CD
– For SKL-SP: -xCORE-AVX512 -qopt-zmm-usage=high
– For KNL (MIC architecture): -xMIC-AVX512

• GCC compilers
– Use -mavx2 to compile for AVX2
– GCC 4.9+ has separate options for most AVX-512 extensions
– GCC 5.3+ has -march=skylake-avx512
– GCC 6.1+ has -march=knl
– GCC 9.1+ has -march=cascadelake

16

Exercise 1

17

#include <stdio.h>
#define ARRAY_SIZE 1024
#define NUMBER_OF_TRIALS 1000000

void main(int argc, char *argv[]) {

/* Declare arrays small enough to stay in L1 cache.
Assume the compiler aligns them correctly. */

double a[ARRAY_SIZE], b[ARRAY_SIZE], c[ARRAY_SIZE];
int i, t;
double m = 1.5, d;

/* Initialize a, b and c arrays */
for (i=0; i < ARRAY_SIZE; i++) {

a[i] = 0.0; b[i] = i*1.0e-9; c[i] = i*0.5e-9;
}
/* Perform operations with arrays many, many times */
for (t=0; t < NUMBER_OF_TRIALS; t++) {

for (i=0; i < ARRAY_SIZE; i++) {
a[i] += m*b[i] + c[i];

}
}
/* Print a result so the loops won't be optimized away */
for (i=0; i < ARRAY_SIZE; i++) d += a[i];
printf("%f\n",d/ARRAY_SIZE);

}

• Copy the code at right
and paste it into a local
file named abc.c

• We will see how different
compiler flags affect the
vectorization of simple
loops

Exercise 1 (cont’d.)

1. Invoke your compiler with no special flags and time a run:

2. Repeat this process for the following sets of options:

(Refer to a previous slide if you have the Intel compiler)

18

gcc-9 abc.c -o abc
/usr/bin/time ./abc

gcc-9 -O2 abc.c -o abc
gcc-9 -O3 -fno-tree-vectorize abc.c -o abc
gcc-9 -O3 abc.c -o abc
gcc-9 -O3 -msse3 abc.c -o abc
gcc-9 -O3 -march=native abc.c -o abc
gcc-9 -O3 -march=??? abc.c -o abc #take a guess

Exercise 1 (still cont’d.)

3. Your best result should be from -march=native . Why?
– You can try -mavx2 on a laptop, but maybe it isn’t as good

– Here is the current list of architectures that gcc knows about

4. Other things to note:
– Optimization -O3 is degraded by -fno-tree-vectorize

– Not specifying an architecture at -O3 is equivalent to -msse3

5. Do you get the expected speedup factors?
– SSE registers hold 2 doubles; AVX registers hold 4 doubles

– Recent laptops should be able to do AVX (but not AVX-512)

19

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html

Why Not Use an Optimized Library?

• Optimized libraries like

OpenBLAS may not have the

exact function you need

• The kernel of abc.c looks like

a DAXPY, or double-precision

(aX + Y)… but it isn’t quite…

• It turns out the inner loop

must be replaced by two

DAXPY calls, not one, and

the resulting code runs

several times slower

20

for (t=0; t < NUMBER_OF_TRIALS; t++) {
for (i=0; i < ARRAY_SIZE; i++) {

a[i] += m*b[i] + c[i];
}

}

for (t=0; t < NUMBER_OF_TRIALS; t++) {
cblas_daxpy(ARRAY_SIZE, m, b, 1, a, 1);
cblas_daxpy(ARRAY_SIZE, 1.0, c, 1, a, 1);

}

Optimization Reports

Use optimization report options for info on vectorization:
icc -c -O3 -qopt-report=2 -qopt-report-phase=vec myvec.c

The =n controls the amount of detail in myvec.optrpt

“Level 2” for GCC: -fopt-info-vec and -fopt-info-vec-missed

21

n Description of information presented

0 No vector report

1 Lists the loops that were vectorized

2 (default level) Adds the loops that were not vectorized, plus a short reason

3 Adds summary information from the vectorizer about all loops

4 Adds verbose information from the vectorizer about all loops

5 Adds details about any data dependencies encountered (proven or assumed)

Exercise 2

Let’s examine optimization reports for the abc.c code.
1. Recompile the code with -O3, along with optimization

reporting (-fopt-info-vec) from the vectorizer.
– Confirm that the inner loops were vectorized as expected.

2. Repeat (1), but this time with vectorization turned off
(i.e., -fno-tree-vectorize) . Do you get any output?

3. Repeat (1), but now add -fopt-info-vec-missed (loops
that missed out on vectorization) to see what else the
compiler tried to do with this code.
– Considering that the main loops ultimately vectorized, you

may find that gcc gives way too much information here.

22

User Perspective

• User’s goal is to supply code that runs well on hardware
• Thus, you need to know the hardware perspective

– Think about how instructions will run on vector hardware
– Try also to combine additions with multiplications
– Furthermore, try to reuse everything you bring into cache!

• And you need to know the compiler perspective
– Look at the code like the compiler looks at it
– At a minimum, set the right compiler options!

23

Vector-Aware Coding

• Know what makes codes vectorizable at all
– The “for” loops (C) or “do” loops (Fortran) that meet constraints

• Know where vectorization ought to occur
• Arrange vector-friendly data access patterns (unit stride)
• Study compiler reports: do loops vectorize as expected?
• Evaluate execution performance: is it near the roofline?
• Implement fixes: directives, compiler flags, code changes

– Remove constructs that hinder vectorization
– Encourage/force vectorization when compiler fails to do it
– Engineer better memory access patterns

24

Challenge: Loop Dependencies

• Vectorization changes the order of computation compared to sequential case
– Groups of computations now happen simultaneously

• Compiler must be able to prove that vectorization will produce correct results
• Key criterion: “unrolled” loop iterations must be independent of each other

– Wider vectors means that more iterations must be independent
– Note, not all kinds of dependencies are detrimental

• Compiler performs dependency analysis and vectorizes accordingly
– It will make conservative assumptions about dependencies, unless guided by directives

25

Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying each operation sequentially:
a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13
a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

for(i=1; i<N; i++)
a[i] = a[i-1] + b[i];

26

Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying each operation sequentially:
a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13
a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

for(i=1; i<N; i++)
a[i] = a[i-1] + b[i];

27

Loop Dependencies: Read After Write

Now let’s try vector operations:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:
a[i-1] = {0,1,2,3} (load)

b[i] = {6,7,8,9} (load)
{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12} (operate)

a[i] = {6, 8, 10, 12} (store)

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30} NOT VECTORIZABLE

for(i=1; i<N; i++)
a[i] = a[i-1] + b[i];

28

Loop Dependencies: Synopsis

• Read After Write
– Also called “flow” dependency
– Variable written first, then read
– Not vectorizable

• Write After Read
– Also called “anti” dependency
– Variable read first, then written
– Vectorizable

for(i=1; i<N; i++)
a[i] = a[i-1] + b[i];

for(i=0; i<N-1; i++)
a[i] = a[i+1] + b[i];

29

Loop Dependencies: Synopsis

• Read After Read
– Not really a dependency
– Vectorizable

• Write After Write
– a.k.a “output” dependency
– Variable written, then re-written
– Not vectorizable
– Exception: array sums and products (+=, *=) are vectorizable

for(i=0; i<N; i++)
a[i] = b[i%2] + c[i];

for(i=0; i<N; i++)
a[i%2] = b[i] + c[i];

30

Loop Dependencies: Aliasing

• In C, pointers can hide data dependencies!
– The memory regions that they point to may overlap

• Is this vectorizable?

– …Not if we give it the arguments compute(a,a-1,c)
– In effect, b[i] is really a[i-1] → Read After Write dependency

• Compilers can usually cope, at some cost to performance

void compute(double *a, double *b, double *c) {
for (i=1; i<N; i++) {

a[i] = b[i] + c[i];
}

}

31

Dependencies and Optimization Reports

• Loop-carried dependencies are a common reason for vectorization failure
• Optimization reports can tell you where the compiler detected apparent

dependencies
– Select a report level that gives info about the loops where vectorization was missed

• Remember, the compiler is conservative: you need to dig into the details of
the report and see if dependencies really exist in the code
– The Intel compiler is generally better than gcc for doing this because it is more concise

32

Exercise 3

1. Make a copy of abc.c called dep.c. Edit it and change the innermost of the
nested loops to look like this:

2. Compile the code with vectorization enabled, and request a report with info
on loops that missed out:

3. Look for notes about dependencies that were detected in the loop starting
on line 20 – or grep for “depend”

33

for (i=1; i < ARRAY_SIZE; i++) {
a[i] += m*b[i] + a[i-1];

}

gcc-9 -O3 dep.c -o dep -fopt-info-vec-missed

Loop Dependencies: Vectorization Hints

• Sometimes, it is impossible for the compiler to prove that there is no data
dependency that will affect correctness
– e.g., unknown index offset, complicated use of pointers

• To stop the compiler from worrying, you can give it the IVDEP (Ignore Vector
DEPendencies) hint
– It assures the compiler, “It’s safe to assume no dependencies”
– Compiler may still choose not to vectorize based on cost
– Example: assume we know M > vector width in doubles...

void vec1(double s1, int M,
int N, double *x) {

#pragma GCC ivdep // for Intel, omit GCC
for(i=M; i<N; i++) x[i] = x[i-M] + s1;

34

Intel Pragmas Affecting Vectorization

• #pragma ivdep
– Compiler ignores apparent dependencies, still considers cost

• #pragma vector always
– Vectorizes the loop if it is correct to do so (no dependencies)
– Overrides a decision not to vectorize based upon cost

• #pragma simd
– Vectorizes the loop regardless of apparent dependencies or cost
– Combines “vector always” and “ivdep”
– Being phased out in favor of OpenMP 4.0 “#pragma omp simd”

• #pragma novector
– Prevents vectorization of a particular loop

35

OpenMP 4.0 and Vectorization

36

• #pragma omp simd

– Can be combined

with other OpenMP

constructs

– Has its own special

clauses

– May not be required

for all compilers: n

order to vectorize

the example at right,

GCC needs “simd”,

Intel doesn’t

#pragma omp for simd private(x) reduction(+:sum)
for (j=1; j<=num_steps; j++) {

x = (j-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

DEMO:

How to vectorize pi_loop.c

with the gcc compiler

• C99 introduced ‘restrict’ keyword to language
– Instructs compiler to assume addresses will not overlap, ever

• Intel compiler may need extra flags: -restrict -std=c99

Loop Dependencies: Language Constructs

void compute(double * restrict a, double * restrict b, double * restrict c) {
for (i=0; i<N; i++) {

a[i] = b[i] + c[i];
}

}

37

A Quick Word on Amdahl’s Law

38

• SIMD is parallel, so Amdahl’s Law is in effect!
– Linear speedup is possible only for perfectly parallel code
– Serial/scalar portions of workload will limit performance
– Asymptote of the speedup curve is 1/(unvectorized fraction)

Memory Performance and Vectorization

• We have mostly been focusing on faster flop/s, but flop/s don’t happen unless
data are present
– Moving data from memory is often the rate-limiting step!

• Data (including scalar data + neighbors) travel between RAM and caches in
groups called “cache lines” that are the exact same size as vectors

• But wait… if data movement is “vectorized”, just like adds and multiplies are
vectorized, then everything is getting the same speedup, right?
– Um, no. The data rate for RAM is slow, even if it is always “vectorized” in a sense
– Well… loads from L1 cache to registers, and stores from registers to L1, do get

vectorized. But that’s just the final short step if the data start way out in RAM

39

Cache and Alignment

• Optimal vectorization takes you beyond the SIMD unit!
– Cache lines start on 16-, 32-, or 64-byte boundaries in memory
– Sequential, aligned access is much faster than random/strided

40

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

+

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

nnn y

y
y
y

x

x
x
x

a

z

z
z
z

!!!
3

2

1

3

2

1

3

2

1

*

x1, x2, x3, … xn

Cache

y1, y2, y3, … yna
z1, z2, z3, … zn

Strided Access

• Fastest usage pattern is “stride 1”: perfectly sequential
– Cache lines arrive in L1d as full, ready-to-load vectors

• Stride-1 constructs:
– Storing data in structs of arrays vs. arrays of structs
– Looping through arrays so their “fast” dimension is innermost

• C/C++: stride 1 on last index (columns)
• Fortran: stride 1 on first index (rows)

do j=1,n
do i=1,n

a(i,j)=b(i,j)*s
end do

end do

for(j=0;j<n;j++) {
for(i=0;i<n;i++) {

a[j][i]=b[j][i]*s;
}

}

41

Penalty for Strided Access

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 1 2 3 4 5 6 7 8Ti
m

e
(G

ig
a

C
lo

ck
 P

er
io

ds
)

Stride

Cost of
Memory-Strided Summation

for (i=0; i<4000000*istride;
i+=istride) {

a[i] = b[i] + c[i]*sfactor;
}

• Striding through memory reduces
effective memory bandwidth!
– Roughly by 1/(stride)

• Why? For some stride s, data
must be “gathered” from s cache
lines to fill a vector register

• It’s worse than non-aligned access

42

Diagnosing Cache & Memory Deficiencies

• Really bad stride patterns may prevent vectorization
– The Intel vector report might say: “vectorization possible but seems inefficient”

• Bad stride and other problems may be difficult to detect
– The result is merely poorer performance than might be expected

• Profiling tools like Intel VTune can help
• Intel Advisor makes recommendations based on source

43

Towards Peak Flop/s: Arithmetic Intensity

• Even a simple stride-1 loop may not get peak flop/s rate!

• The most common reason is that the arithmetic intensity (AI = flop/byte) of
the code is too low
– VPU becomes stalled waiting for loads and stores to complete

– Delays become longer as the memory request goes further out in the hierarchy from L1
to L2 (to L3?) to RAM

– Even if the right vectors are in L1 cache, there is limited bandwidth to the registers

• If the goal is to maximize flop/s, you’ll want to try to improve AI

• Also want threads to work on independent, cache-size chunks of data
– Watch out for false sharing, where 2 threads fight needlessly over a cache line

44

Roofline Analysis

45

Deslippe et al., “Guiding Optimization Using the Roofline Model,”
tutorial presentation at IXPUG2016, Argonne, IL, Sept. 21, 2016.
https://anl.app.box.com/v/IXPUG2016-presentation-29

https://anl.app.box.com/v/IXPUG2016-presentation-29

What Does Roofline Analysis Tell You?

• Roofline analysis is a way of telling whether a code is compute bound or
memory bound

• The “roofline” is actually a performance ceiling which is determined by
hardware characteristics

• The key parameter is the arithmetic intensity or AI (flop/byte) of the code: it
tells you whether data can be loaded [stored] fast enough from [to] memory

• Appropriate to use with codes that are looking to achieve the highest flop/s
rate possible

46

What AI is Required for Peak Flop/s?

• Again, a typical processor core from Intel can do 2 vector flops on every cycle

(FMA = 1 add + 1 multiply)

• A typical processor can also do 1 vector load on every cycle, and 1 vector

store every other cycle, which implies:

– Main vectorized loop must do at least 2 flops per load
– Main vectorized loop must do at least 4 flops per store

• Implications: 50% of operands must be either vectors of constants, or

variables that aren’t reloaded on every iteration; and, every stored result

must take 2 or more FMAs

– For the latest server-class processors, all the above per-core rates are doubled;

implications are the same

47

Conclusions: Vectorization Basics

• The compiler “automatically” vectorizes tight loops
• Write code that is vector-friendly

– Innermost loop accesses arrays with stride one
– Loop bodies consist of simple multiplications and additions
– Data in cache are reused; loads are stores are minimized

• Write code that avoids the potential issues
– No loop-carried dependencies, branching, aliasing, etc.

• This means you know where vectorization should occur
• Optimization reports will tell you if expectations are met

– See whether the compiler’s failures are legitimate
– Fix code if the compiler is right; use #pragma if it is not

48

PART II:

Performance Problems in
Vectorized Track Finding

(original author: Matevž Tadel, UCSD)

History of the Project

• NSF grant: “Particle Tracking at High Luminosity on Heterogeneous, Parallel
Processor Architectures”
– Cornell, Princeton, UCSD ➛ all CMS
– HL-LHC: high pile-up, 200 interactions per bunch crossing
– New computer architectures: MIC / AVX-512, GPUs, ARM-64
– Goal: make tracking software more general and faster!

• Proposal: explore how far we can get by enhancing the parallelism of existing,
production tracking algorithms:
– Keep well-known physics performance – efficiencies, fake rates
– Make code amenable to vectorization and multi-threading, through new data structures

and generalized algorithms

50

Complexity of Tracking

• Number of hits grows linearly with N of tracks
– Combinatorial explosion: L layers gives NL combinations of hits

• Have to use cuts and cleverness to limit the search space
– Traditional tracking: add hits from every layer, limit explosion by limiting total number of

track candidates considered per seed (i.e., starter track with 3 or 4 hits)
– Tracklets & cellular automata ➛ divide and conquer; e.g., with three layers for tracklets,

there is only N3 growth

• In the end we want both speed and physics performance
– Can be different for different applications / stages of processing

51

Main Parts of Track Finding & Fitting

• Propagation to next hit / sensor / layer

– Costliest part is calculating derivatives for error propagation

– Can rely on automatic vectorization by compiler:

#pragma simd

for t in [tracks]

» about 80 lines of calculations …

• Hit selection

– This is hard, depends on space-partitioning data structures

– Will not be covered here

• Kalman update

– Can’t rely on automatic vectorization for lots of small matrices

– The rest of the talk is mostly about this

52

• Hit: 3-vec of position, 3x3 symm. covariance matrix, label
– 40 bytes – a bit less than cache line

• Track: 6-vec of pos+mom, 6x6 sym cov matrix, hit indices
– Keep just indices of assigned hits – 256 bytes – 4 cache lines

– More traditional representation is 5 + 5x5 sym

– In 6x6 the covariance matrix is notably simpler (block diagonal!),
but one needs a way to exploit this

• Kalman Filter: a set of operations using the above objects
– Mostly multiplications; intermediate results are also 6x3

matrices; product of symmetric matrices is not symmetric

– Similarity operation

– 3x3 matrix inversion

53

Objects in Track Finding & Fitting

Vectorization – Factors

• Architecture

– Number and width of vector registers

– Memory hierarchy, esp. L1 size and latency

• Algorithms

– HEP algorithms seldom allow automatic compiler vectorization

– Need to add an implicit or explicit inner loop in key sections, sometimes generated by

compiler (with -O3 or specific options)

– Can vectorize by hand in some cases (next section); need to deal with edge effects and

imbalance

• Data structures

– Size, alignment, reuse of data in registers, L1, L2,…

54

Outline

• First encounter with vectorization on a new architecture and compiler
– Exercise – absolute floating point performance estimation

• Vectorizing small matrix operations – Matriplex
– Semi-automatic vectorization of matrix operations

• Conclusion
– Hardware limitations

55

FIRST ENCOUNTER WITH
VECTORIZATION ON A NEW
ARCHITECTURE AND COMPILER

56

How to Know The Right Thing to Do™

• Usually we tune existing code:
– Run profilers ➙ fix hotspots
– Measure relative speed-up & declare victory
– But: how much performance was left on the table?

• When trying something really new you want to know absolute performance
– How many floating point operations am I doing compared to the peak of the

architecture?
– We were in this situation with vectorization / Xeon Phi / Intel compiler back in 2013

57

mtorture – Machine Torture

• Torture machine (and yourself) until performance and compiler behavior is
understood: https://github.com/osschar/mtorture

• All tests have basic dependence on problem size, i.e., number of elements
processed in the same inner loop
– Loop many times over the same data – sum up flops, measure time
– For smaller problem sizes the data will fit into L1, then L2, L3
– No manual prefetching – we let compiler / CPU do whatever it does
– Maybe with manual prefetching better results could be obtained for larger N

• Absolute efficiency metric requires absolute normalization:
– CPU clock speed
– Width of the vector unit

58

https://github.com/osschar/mtorture

Test t1 – ArrayTest

Objective: Find out performance of your laptop CPU / compiler.

• common.h: definitions of aligned operator new, compiler hints, global / environment variables

• ArrayTest.h /.cxx: do requested operation over n elements in float arrays:

• sum2: c = a + b ➙ 1 * n ops

• sum2_sqr: c = a*a +2*a*b + b*b ➙ 6 * n ops

• …see others in ArrayTest.h /.cxx

– All return number of floating point operations performed

• Timing.h /.cxx: takes a function object, runs it repeatedly until approximately TEST_DURATION

– Sums up the operation count, knows the execution time and assumed clock frequency => calculates flops

– From assumed vector unit width can estimate effective vector unit usage

• t1.cxx: takes a test (e.g. sum2) and runs it for n : N_VEC_MIN to N_VEC_MAX, n = 2 * n

– print results in format accepted by TTree::ReadFile()

59

Example of a Low Level Test: sum2
long64 ArrayTest::sum2(int n)
{
float *Z = fA[0];
float *A = fA[1];
float *B = fA[2];

ASSUME_ALIGNED(Z, 64); // Vector loads/stores can be done directly
ASSUME_ALIGNED(A, 64);
ASSUME_ALIGNED(B, 64);
ASSUME(n%16, 0); // No trailing elements, always full vector width

#pragma simd // Force compiler to vectorize, no array dependencies
for (int i = 0; i < n; ++i)
{
Z[i] = A[i] + B[i];

}

return n;
}

60

Exercise: Do the Following
git clone git@github.com:osschar/mtorture.git
cd mtorture

Check max frequency of your CPU, see the top of README.md
Edit Timing.cxx to set your frequency.
Can also set vector unit width - default is 8 (assume AVX)

For macOS, modify Makefile, set CXX to your gcc,
this should be enough for MacPorts: CXX := c++-mp-5
this should be enough for Homebrew: CXX := c++-9
make t1
TEST_DURATION=0.1 ./t1
should print out about 30 lines of numbers

Now, run a bunch of different tests, packed in the script:
./codas.sh
This will store the output into independent files, e.g.,
arr_sum2_O3.rt. Should take about 2 minutes ...

61

mailto:git@github.com:osschar/mtorture.git
https://github.com/osschar/mtorture/blob/master/README.md

Output Explanation

This output data can be read by TTree::ReadTree(), e.g.:
matevz@glut mtorture> ./t1

NVec/I:Time/D:Gops:Gflops:OpT:VecUt ⟵ branch names and types (I-int, D-double)
NVec Time Gops Gflops OpT VecUt

1 0.963609 1.563768 1.622824 0.6242 0.0780
...

32 1.052645 16.436191 15.614183 6.0055 0.7507
64 1.001637 17.609308 17.580529 6.7617 0.8452

128 0.774350 14.021096 18.106919 6.9642 0.8705
256 1.016159 18.213868 17.924229 6.8939 0.8617
512 1.036856 19.447122 18.755853 7.2138 0.9017

1024 1.043660 19.826760 18.997337 7.3067 0.9133
...

Time: actual runtime, in principle only tells you if Timing calibration was ok
Gops: giga operations during the test (as reported by the test function)
Gflops: giga operations per second – Gops / Time
OpT: operations per clock tick – Gflops / given CPU frequency
VecUt: vector utilization – OpT / given vector unit width

62

63

Function call overhead

Division – cache does not matter

?

Vector too small

L1 drop off, 32KB

L2 drop off, 256KB

L3 drop off (6MB), too soon?
Output matters, too!

Plotter.C – ROOT macro / class for plotting a set of such outputs
on the same plot. E.g. plot_min() for a laptop (2.6 GHz, Vw = 8):

Example Plot, Gflops

Your Turn to Plot Some Graphs
assuming you successfully ran codas.sh
setup ROOT environment
source <path-to-root/bin>/thisroot.sh

codas.C has a set of predefined multigraphs:
root codas.C
>> plot_min()

Compare to results for Matevz’s laptop.
Poorer? Try setting OPT:= -O3 -mavx
Or try setting OPT := -O3 -march=native

64

65

Normalization with Clock Speed, Vector Width

• It’s really just normalization.
– Helps you see different plateaus
– On next slides will mostly show

Vector Utilization

• Why is vector utilization low?
– B/W limited!

66

quint < quad < cube < sqr ???
- dependent operations
- NO register pressure!

• All cache effects less pronounced.
– High op tests don’t mind L1 at all.

• Vector Utilization > 1?
– Multiple vector units! FMA operations!

• Can also be too low clock in Timing.cxx / turbo!
– Gets even more pronounced on desktop / server CPUs.

plot_sig() – Significant Computation / Load

67

Better, right?
- more vector processing units
- FMAs
- deeper pipelines
- larger L3 (e.g, 8 vs. 6 MB)

Compare Laptop to Desktop CPU

Advanced Usage

• When changing compiler options or compile time constants the test needs to
be recompiled for every invocation.
– That’s what the perl library Test.pm and perl scripts t1.pl are doing there.

• See codas.sh, parts that are commented out:
– run_vset() – use different vectorization instruction sets:

» -msse4.2, -mavx
» Note: some might not be available on your machine.

– Use plot_vecopt() in codas.C to compare results.
– run_trig() – trigonometric functions / plot_trig()

68

69

• From desktop, gcc-6.3.
• Note: -O3 did not do AVX!

plot_vecopt() – Effect of Vectorization Opts

70

• Expensive!
• Use approximations when

possible.

Note: ops here are sin
/ cos / atan2.

plot_trig() – Trigonometric Functions

VECTORIZING MATRIX OPERATIONS
– MATRIPLEX

71

Matriplex – Introduction

• Nearly impossible to vectorize small matrix/vector ops
– Many multiplications and additions, but pattern keeps changing
– Lots of shuffling and replication as a consequence

• Expand the ops by doing VW (8 or 16) matrices in parallel!
– Matriplex is a library that helps you do it in optimal fashion
– Effectively, #pragma simd over N matrix multiplications
– Requires all the matrices to be present in L1 at the same time
– Pressure on cache and registers

» 6x6 floats * 4 Bytes * 3 operands * 8 = 3456 Bytes
» 6x6 floats * 4 Bytes * 3 operands * 16 = 6912 Bytes

72

• “Matrix-major” memory representation
– Operate on a number of NxN matrices in parallel

• n = vector unit width (or some multiple of it, as long as things fit in L1)
– Trivial loading of vector registers
– Requires repacking of input data

M1(1,1) M1(1,2) … M1(1,N) M1(2,1)
…
,

…
M1(N,N) Mn+1(1,1) Mn+1(1,2

) … Mn+1(1,N) Mn+1(2,1) … ,
…

Mn+1(N,N
)

M2n+1(1,
1)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1)
…
,

…
M2(N,N) Mn+2(1,1) Mn+2

(1,2) … Mn+2 (1,N) Mn+2

(2,1)
… ,
…

Mn+2(N,N
)

M2n+2(1,
1)

… … … … … … … … … … …

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(1,1) M2n(1,2) … M2n(1,N) M2n(2,1) … M2n(N,N) M3n(1,1)

fa
st

 m
em

or
y

di
re

ct
io

n

R1

R2

…

Rn

73

Matriplex – The Idea

N-way SIMD with 3x3 Matrices
static void Multiply(const MPlex<T, 3, 3, N>& A,

const MPlex<T, 3, 3, N>& B,
MPlex<T, 3, 3, N>& C)

{
const T *a = A.fArray; ASSUME_ALIGNED(a, 64);
const T *b = B.fArray; ASSUME_ALIGNED(b, 64);

T *c = C.fArray; ASSUME_ALIGNED(c, 64);
#pragma simd

for (int n = 0; n < N; ++n)
{

c[0*N+n] = a[0*N+n]*b[0*N+n] + a[1*N+n]*b[3*N+n] + a[2*N+n]*b[6*N+n];
c[1*N+n] = a[0*N+n]*b[1*N+n] + a[1*N+n]*b[4*N+n] + a[2*N+n]*b[7*N+n];
c[2*N+n] = a[0*N+n]*b[2*N+n] + a[1*N+n]*b[5*N+n] + a[2*N+n]*b[8*N+n];
c[3*N+n] = a[3*N+n]*b[0*N+n] + a[4*N+n]*b[3*N+n] + a[5*N+n]*b[6*N+n];
c[4*N+n] = a[3*N+n]*b[1*N+n] + a[4*N+n]*b[4*N+n] + a[5*N+n]*b[7*N+n];
c[5*N+n] = a[3*N+n]*b[2*N+n] + a[4*N+n]*b[5*N+n] + a[5*N+n]*b[8*N+n];
c[6*N+n] = a[6*N+n]*b[0*N+n] + a[7*N+n]*b[3*N+n] + a[8*N+n]*b[6*N+n];
c[7*N+n] = a[6*N+n]*b[1*N+n] + a[7*N+n]*b[4*N+n] + a[8*N+n]*b[7*N+n];
c[8*N+n] = a[6*N+n]*b[2*N+n] + a[7*N+n]*b[5*N+n] + a[8*N+n]*b[8*N+n];

}
}

74

Matriplex – Features

• Only needed operations were implemented (+ test stuff)
• GenMul.pm – generates matrix multiplications using Perl

– Standard and symmetric matrices supported
– In-code transpose (for similarity transformation)
– Takes advantage of known 0 and 1 elements
– Accounts for operation latencies in accumulating dot products
– Generates standard C++ (unrolled loops) or intrinsics

» intrinsics done for MIC, AVX, and AVX512 (no FMA on AVX, came with AVX2)
» Improvements in icc have largely done away with the need for intrinsics

– Initial tests were done with icc in 2013/4
» loop unrolling brought ~x2 speedup
» and intrinsics another x2 (at least on MIC)

75

Example Script Using GenMul.pm

76

$temp = new GenMul::Matrix('name'=>'c', 'M'=>$DIM,
'N'=>$DIM);

$errPropT = new GenMul::MatrixTranspose($errProp);

OUTPUT

$m = new GenMul::Multiply;

outErr and c are just templates ...

$m->dump_multiply_std_and_intrinsic
("MultHelixProp.ah”, $errProp, $outErr, $temp);

$temp ->{name} = 'b';
$outErr->{name} = 'c';

$m->dump_multiply_std_and_intrinsic
("MultHelixPropTransp.ah”, $temp, $errPropT, $outErr);

use GenMul;

my $DIM = 6;

Propagate Helix To R -- final similarity, two ops.
outErr = errProp * outErr * errPropT
outErr is symmetric

MATRIX DEFINITIONS

$errProp = new GenMul::Matrix
('name'=>'a', 'M'=>$DIM, 'N'=>$DIM);

$errProp->set_pattern(<<"FNORD");
x x 0 x x 0
x x 0 x x 0
x x 1 x x x
x x 0 x x 0
x x 0 x x 0
0 0 0 0 0 1
FNORD

$outErr = new GenMul::MatrixSym
('name'=>'b', 'M'=>$DIM, 'N'=>$DIM);

77

#ifdef MIC_INTRINSICS

for (int n = 0; n < N; n += 64 / sizeof(T))
{

__m512 a_0 = LD(a, 0);
__m512 b_0 = LD(b, 0);
__m512 c_0 = MUL(a_0, b_0);
__m512 b_1 = LD(b, 1);
__m512 c_1 = MUL(a_0, b_1);

…...
__m512 a_12 = LD(a, 12);
__m512 c_12 = MUL(a_12, b_0);
__m512 c_13 = MUL(a_12, b_1);
__m512 c_14 = MUL(a_12, b_3);
ST(c, 6, c_6);
ST(c, 7, c_7);

......
ST(c, 33, c_33);
__m512 c_34 = b_19;
__m512 c_35 = b_20;
ST(c, 34, c_34);
ST(c, 35, c_35);

}

#else

#pragma simd
for (int n = 0; n < N; ++n)
{

c[0*N+n] = a[0*N+n]*b[0*N+n] +
a[1*N+n]*b[1*N+n] +
a[3*N+n]*b[6*N+n] +
a[4*N+n]*b[10*N+n];

c[1*N+n] = a[0*N+n]*b[1*N+n] +
a[1*N+n]*b[2*N+n] +
a[3*N+n]*b[7*N+n] +
a[4*N+n]*b[11*N+n];

c[2*N+n] = a[0*N+n]*b[3*N+n] +
a[1*N+n]*b[4*N+n] +
a[3*N+n]*b[8*N+n] +
a[4*N+n]*b[12*N+n];

……
c[33*N+n] = b[18*N+n];
c[34*N+n] = b[19*N+n];
c[35*N+n] = b[20*N+n];

}
#endif

Example of Generated Code
#define LD(a, i) _mm512_load_ps(&a[i*N+n])
#define ADD(a, b) _mm512_add_ps(a, b)
#define MUL(a, b) _mm512_mul_ps(a, b)
#define FMA(a, b, v) _mm512_fmadd_ps(a, b, v)
#define ST(a, i, r) _mm512_store_ps(&a[i*N+n], r)

Matriplex Templates
template<typename T, idx_t D1, idx_t D2, idx_t N>
class Matriplex
{ enum { kRows = D1, kCols = D2,

kSize = D1 * D2, kTotSize = N * kSize };

T fArray[kTotSize] __attribute__((aligned(64)));
. . .

};
// Covers also vectors with D2 = 1 and scalars with D1 = D2 = 1.

template<typename T, idx_t D, idx_t N>
class MatriplexSym
{ enum { kRows = D, kCols = D,

kSize = (D + 1) * D / 2, kTotSize = N * kSize };

T fArray[kTotSize] __attribute__((aligned(64)));
. . .

};

78

79

Sandy Bridge,
Xeon, AVX

KNC, Xeon Phi,
MIC-AVX512

Matrix Multiplication

• Note: x-axis is now Matriplex size
– First number is dimension
– Second is Size of the Matriplex (parameter N)

• t3.cxx

– Like t1, just uses MPlexTest

• MPlexTest.h /.cxx

– Allocates MatriplexVectors, defines test functions

– Note the MPT_DIM / MPT_SIZE #defines (requires recompiling!)

• Matriplex/MatriplexVector.h

– Thought this will be useful … now just a testing construct

• Matriplex/Matriplex.h & MatriplexSym.h

– The real thing™

• codas-mplex.sh, codas.C

– Runs a bunch of tests with 3x3 and 6x6 matrices, does plots

80

O
U

T
 O

F O
R
D

E
R

Test t3 – MPlexTest

81

• CopyIn
– Take one std Matrix and distribute it into the plex.

• SlurpIn
– Build plexes by taking element (i,j) of each matrix.
– MIC and AVX512 have a special gather instruction for input

matrices that are addressable from a common address base.

• CopyOut – populate output matrix
– Jumps over 8 or 16 floats (16 floats is a cache line) – yikes.
– Copy out is done infrequently and often only for selected parts.
– It hasn’t shown up on the radar of things to fix yet.
– CopyIn did and that’s why we have SlurpIn J

Getting Data into and out of Matriplexes

CONCLUSION

82

Conclusions: Vectorized Track Finding

83

• Vectorization can give a significant boost depending on:
– The ability to express the problem in vector form
– The problem size and problem complexity
– The ability to move data through cache hierarchy to VPUs

• Understanding performance at the simplest level is vital
• Memory issues can blur vectorization effects:

– Multithreading – cache sharing, locking
– Swapping algorithms or data blocks – cache thrashing

• Use of code-line level profiling is crucial!
– Don’t be afraid of the assembler view, it is often revealing

• Experiment – being frustrated is part of the game J

