14th June 2019@ Exploration of Particle Physics and Cosmology with Neutrinos Workshop

$\mu^- \rightarrow e^- X$ in muonic atom

Yuichi Uesaka (Saitama U.)

Contents

Charged lepton flavor violation

& light new particles

• searches for $\mu \rightarrow e + X(invisible)$

• $\mu^- \rightarrow e^- X$ in muonic atom

- Advantages of muonic atom
- Formulation for e⁻ spectrum
- Numerical results & discussion

1/16 Charged Lepton Flavor Violation (CLFV)

Mode	Upper bound	Experiment (Year)	
$\mu^+ \rightarrow e^+ \gamma$	4.2×10^{-13}	MEG (2016)	
$\mu^+ \rightarrow e^+ e^+ e^-$	1.0×10^{-12}	SINDRUM (1988)	
$\mu^{-}Au \rightarrow e^{-}Au$	7×10^{-13}	SINDRUM II (2006)	
$\mu^+ \rightarrow e^+ X, X \rightarrow \text{inv.}$	$O(10^{-5})$	TWIST (2015)	
$\mu^+ \to e^+ \gamma X, X \to \text{inv.}$	<i>O</i> (10 ⁻⁹)	Crystal Box (1988)	
$\mu^+ \rightarrow e^+ X, X \rightarrow e^+ e^-$	$O(10^{-12})$	SINDRUM (1986)	
$\mu^+ \rightarrow e^+ X$, $X \rightarrow \gamma \gamma$	$O(10^{-10})$	MEG (2012)	
$\tau \to eX(\mu X), X \to \text{inv.}$	$O(10^{-2})$	ARGUS (1995)	

Light invisible X with CLFV

- theoretical examples of X
 - light (pseudo-)scalar : majoron, familon, axion(-like) particle, ...
 - light gauge boson

Example : Majoron

Singlet Majoron model Y. Chikashige, R.N. Mohapatra, & R.D. Peccei, PLB98 (1981) 265.

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N}_R \gamma^{\mu} \partial_{\mu} N_R + (\partial_{\mu} \sigma)^{\dagger} (\partial^{\mu} \sigma) - V(\sigma)$$

$$- \left(\overline{L}y N_R H + \frac{1}{2} \overline{N}_R^c \lambda N_R \sigma + h. c.\right) \left(\begin{array}{c} N_R : \text{right-handed neutrino} \\ \sigma : \text{scalar with } L = -2 \end{array} \right)$$

$$SSB \text{ of lepton } \#$$

$$\sigma(x) = f + \rho(x) + iJ(x)$$

$$J : \text{ majorana mass of neutrino}$$

$$I : \text{ majorana mass of neutrino}$$

$$V \cdot \text{ CLFV coupling at one loop !}$$

$$J = \begin{array}{c} N_i \\ \eta_j \\ \eta_$$

$\mu^+ \rightarrow e^+ X$ searches

 $m_X < m_\mu$

> A. Jodidio *et al.* PRD **34**, 1967 (1986).

- + $1.8 \times 10^7 \ \mu^+$ that was highly polarized
- search for e^+ emitted in opposite direction for μ^+ polarization
- ${\rm Br}(\mu^+ \to e^+ X) < 2.6 \times 10^{-6}$ for $m_X = 0$

► Mu3e Collab. A. Schöning, Talk at Flavour and Dark Matter Workshop, Heidelberg, September 28 (2017).

• Br < 10^{-8} (for 25MeV < m_X < 95MeV)

$\mu^- \rightarrow e^- X$ in a muonic atom

cf. X. G. i Tormo *et al.*, PRD **84**, 113010 (2011). & H. Natori, Talk at 73th JPS meeting (2018).

5/16

Advantages over free muon decay

1. less background

---:
$$\mu^+ \rightarrow e^+ X$$
 (free)
---: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$ (free)
: $\mu^- \rightarrow e^- X$ (μ -gold)
: $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$ (μ -gold)

different peak positions of signal & BG

- 2. more information : "spectrum", "dependence on nucleus", ...
- 3. huge # of muonic atoms in coming experiments (COMET, Mu2e, DeeMe)

Disadvantages

✓ non-monochromatic signal

✓ shorter life time of muonic atom

6/16 Spectrum near end-point (rough estimation)

DIO with two neutrino emission $\mathcal{L} = G(\overline{\mu}\gamma_{\alpha}\nu_{\mu})(\overline{\nu_{e}}\gamma^{\alpha}e)$ (Decay In Orbit)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E_e} \propto \int \frac{\mathrm{d}^3 p_{\nu}}{E_{\nu}} \frac{\mathrm{d}^3 \overline{p}_{\nu}}{\overline{E}_{\nu}} \delta(E_{\nu} + \overline{E}_{\nu} + E_e - E_{tot}) \cdots p_{\nu} \cdots \overline{p}_{\nu}$$
$$\Delta \equiv \frac{E_{tot} - E_e}{m_{\mu}}$$
$$\Delta \equiv \frac{M_{tot} - E_e}{m_{\mu}}$$

DIO with one boson emission $\mathcal{L} = g(\overline{\mu}\gamma_{\alpha}e)\partial^{\alpha}X$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E_e} \propto \int \frac{\mathrm{d}^3 p_X}{E_X} \delta \left(E_\nu + \overline{E}_\nu + E_e - E_{tot} \right) \, |\cdots p_X|^2$$

$$\sim \Delta^3$$
 near end-point

Investigation of e^- spectrum near **end-point** could be a good probe for $\mu^- \rightarrow e^- X$.

Need to take into account - relativistic effect for bound μ^- , distortion of emitted e^- in Coulomb potential, finite size of nucleus, nuclear recoil, ...

Previous work X. G. i Tormo *et al.*, PRD **84**, 113010 (2011).

assuming that massless X has yukawa-type CLFV interaction

$$\mathcal{L}_I = g(\overline{\mu}e)X$$
 (g: coupling)

7/16

- ✓ The result of the past μ -*e* conv. corresponds to Br($\mu \rightarrow eX$) < 3 × 10⁻³.
- ✓ Sensitivity of COMET & Mu2e : $Br(\mu \rightarrow eX) \sim 2 \times 10^{-5}$

same level as the current limit of free μ^+ search (~ 10^{-5})

Aim of this work

$\mu^- \rightarrow e^- X$ in a muonic atom

X. G. i Tormo *et al.*

CLFV interaction : $\mathcal{L}_I = g(\overline{\mu}e)X$

This work

✓ various possibilities of CLFV interaction

If the shape of e^- spectrum depends on CLFV interaction, we could determine the new physics model by observation.

Effective models

A. Scalar X

yukawa coupling

(e.g. majoron induced by R-parity violation, ...)

already analyzed by X. G. i Tormo et al., PRD 84, 113010 (2011).

$$\mathcal{L}_{S0} = g_{S0}(\overline{e}\mu)X + [H.c.]$$

derivative coupling (e.g. majoron, familon, axion, ...)

$$\mathcal{L}_{S1} = \frac{g_{S1}}{\Lambda_{S1}} (\overline{e} \gamma_{\alpha} \mu) \partial^{\alpha} X + [H.c.]$$

B. Vector X

$$\mathcal{L}_{V0} = g_{V0}(\overline{e}\gamma_{\alpha}\mu)X^{\alpha} + [H.c.] \quad (\text{ for only massive } X)$$

dipole coupling

$$\mathcal{L}_{V1} = \frac{g_{V1}}{\Lambda_{V1}} \left(\overline{e} \sigma_{\alpha\beta} \mu \right) X^{\alpha\beta} + \begin{bmatrix} H.c. \end{bmatrix}_{X^{\alpha\beta} = \partial^{\alpha} X^{\beta} - \partial^{\beta} X^{\alpha}}$$

Effective models

A. Scalar X

yukawa coupling

(e.g. majoron induced by R-parity violation, ...)

already analyzed by X. G. i Tormo et al., PRD 84, 113010 (2011).

$$\mathcal{L}_{S0} = g_{S0}(\overline{e}\mu)X + [H.c.]$$

derivative coupling (e.g. majoron, familon, axion, ...)

$$\mathcal{L}_{S1} = \frac{g_{S1}}{\Lambda_{S1}} (\overline{e} \gamma_{\alpha} \mu) \partial^{\alpha} X + [H.c.]$$

B. Vector X

 $\mathcal{L}_{V0} = g_{V0}(\overline{e}\gamma_{\alpha}\mu)X^{\alpha} + [H.c.] \quad (\text{ for only massive } X)$

dipole coupling

$$\mathcal{L}_{V1} = \frac{g_{V1}}{\Lambda_{V1}} \left(\overline{e} \sigma_{\alpha\beta} \mu \right) X^{\alpha\beta} + \begin{bmatrix} H.c. \end{bmatrix}_{X^{\alpha\beta} = \partial^{\alpha} X^{\beta} - \partial^{\beta} X^{\alpha}}$$

Formulation for decay rate

$$\Gamma = \int \frac{d^3 p_e}{(2\pi)^3 2E_e} \frac{d^3 p_X}{(2\pi)^3 2E_X} (2\pi) \delta \left(m_\mu - E_e - E_X \right) \\ \times \sum_{spins} \left| \langle \psi_e^{s_e}(\boldsymbol{p}_e) \phi_X^{s_X}(\boldsymbol{p}_X) | \mathcal{L} | \psi_\mu^{s_\mu}(1S) \rangle \right|^2$$
partial wave expansion for the electron in the final state
$$\psi_e^{p,s} = \sum_{\kappa,\mu,m} 4\pi \, i^{l_\kappa} (l_\kappa, m, 1/2, s | j_\kappa, \mu) Y_{l_\kappa,m}^*(\hat{p}) e^{-i\delta_\kappa} \psi_p^{\kappa,\mu}$$
Dirac eq. for radial wave functions
$$\frac{dg_\kappa(r)}{dr} + \frac{1+\kappa}{r} g_\kappa(r) - (E+m+e\phi(r)) f_\kappa(r) = 0$$

$$\frac{df_\kappa(r)}{dr} + \frac{1-\kappa}{r} f_\kappa(r) + (E-m+e\phi(r)) g_\kappa(r) = 0$$

 ϕ : nuclear Coulomb potential

Electron spectrum

yukawa coupling

$$\frac{d\Gamma}{dE_{e}} = \frac{g_{S0}^{2}}{4\pi^{2}} \frac{p_{e}p_{X}}{m_{\mu}^{2}} \sum_{\kappa} (2j_{\kappa}+1)|I_{\kappa}|^{2} \qquad \kappa : \text{angular momentum of } e^{-}$$

$$I_{\kappa} = m_{\mu} \int_{0}^{\infty} drr^{2} j_{l_{\kappa}}(p_{X}r) \{g_{\mu}^{\kappa}(r)g_{\mu}^{1s}(r) - f_{p_{e}}^{\kappa}(r)f_{\mu}^{1s}(r)\}$$

e^{-} spectrum ($m_X = 0$)

> Spectrum does not strongly depend on properties of X.

The sharper peak is obtained for the lighter nucleus.

Spectrum near end-point

$m_{\mu} d\Gamma \sum m_{\mu} di$		Yukawa	Derivative	Dipole
$\overline{\Gamma_0} \frac{dE_e}{dE_e} = \sum a_i \Delta^e$	<i>a</i> ₁	3.4×10^{-10}	8.4×10^{-16}	3.0×10^{-9}
i i	<i>a</i> ₂	-3.1×10^{-7}	-2.3×10^{-12}	-2.6×10^{-7}
$E_{\rm tot} - E_e$	<i>a</i> ₃	9.7×10^{-5}	8.1×10^{-5}	3.3×10^{-4}
$\Delta = $	a_4	1.2×10^{-3}	8.7×10^{-4}	-2.8×10^{-2}

Ratio to background

Nuclear dependence ($m_X = 0$)

Summary

- $\succ \mu^- \rightarrow e^- X$ in a muonic atom
 - Promising probe of a light neutral boson with CLFV (e.g. majoron)
 - ✓ Advantages over free muon
 - less background
 - more information (shape of spectrum, Z-dependence, ...)
 - many muonic atoms in coming experiments (COMET, Mu2e, DeeMe)
 - ✓ Findings in e^- spectrum
 - the rough shape does not depend on the type of CLFV interaction
 - dipole-case : large tail
 - yukawa-case : characteristic behavior near endpoint (doubtful?)
 - ✓ Detailed simulation is in progress with members of COMET